Advertisement

Mechanisms of Action of Reversal Agents

  • W. C. Bowman
Conference paper

Abstract

Most types of reversal agents act mainly by increasing the concentration of acetylcholine available in the junctional cleft to compete with the nondepolarizing neuromuscular blocking drugs. Hence, it is worthwhile first to consider the dynamics of the actions both of the neurotransmitter (acetylcholine) and of the clinically-used nondepolarizing blocking drugs.

Keywords

Blocking Drug Reversal Agent Endplate Potential Esteratic Site Anticholinesterase Drug 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Taylor P, Radic, Z. The cholinesterases : from genes to proteins. Annu. Rev. Pharmacol. Toxicol. 1994; 34: 281–320.PubMedCrossRefGoogle Scholar
  2. 2.
    Koelle GB. Enhancement of acetylcholinesterase synthesis by glycyl-L-glutamine : an example of a small peptide that regulates differential transcription. Trends Pharmacol. Sci. 1988; 9: 318–321.PubMedCrossRefGoogle Scholar
  3. 3.
    Anglister L. Acteylcholinesterase from the motor nerve terminal accumulates on the synaptic basal lamina of the myofiber. J. Cell. Biol. 1991; 115: 755–764.PubMedCrossRefGoogle Scholar
  4. 4.
    Main AR. Structure and inhibitors of cholinesterase. In Biology of cholinergic function 1976; Eds : Goldberg AM & Hanin I. Raven Press, New York. pp 269–353.Google Scholar
  5. 5.
    Hobbiger F. Pharmacology of anticholinesterase drugs. In Neuromuscular junction 1976; Ed Zaimis E Handbook of Experimental Pharmacology, vol 42, Springer-Verlag, Berlin, pp487–581.CrossRefGoogle Scholar
  6. 6.
    Gilson MK, Straatsma T P, McCammon JA et al. Open&#x201Cback door&#x201C in a molecular dynamics simulation of acetylcholinesterase. Science 1994; 263: 1276–1278.PubMedCrossRefGoogle Scholar
  7. 7.
    Bowman WC. Pharmacology of neuromuscular function, 1990; Wright-Butterworth, London.Google Scholar
  8. 8.
    Baird WLM, Bowman WC, Kerr WJ. Some actions of ORG NC45 and of edrophonium in the anaesthetized cat and in man. Br. J. Anaesth. 1982; 54: 375–385.PubMedCrossRefGoogle Scholar
  9. 9.
    Heijke SAM, Smith G, Key A. Comparison of the combined effects of atropine and neostigmine with atropine and edrophonium on the lower oesophageal sphincter. Anaesthesia 1991; 46: 628–631.PubMedCrossRefGoogle Scholar
  10. 10.
    Wachtel RE. Comparison of anticholinesterases and their effects on acetylcholine-activated ion channels. Anesthesiology 1990; 72: 496–503.PubMedCrossRefGoogle Scholar
  11. 11.
    Yost CS, Maestrone E. Clinical concentrations of edrophonium enhance desensitization of the nicotinic acetylcholine receptor. Anesth. Analg. 1994; 78: 520–526.PubMedCrossRefGoogle Scholar
  12. 12.
    Braga MFM, Rowan EG, Harvey AL, Bowman WC. Prejunctional action of neostigmine on mouse neuromuscular preparations. Br. J. Anaesth. 1993; 70: 405–410.PubMedCrossRefGoogle Scholar
  13. 13.
    Harvey AL, Rowan E. Effects of tacrine, aminopyridines and physostigmine on acetylcholinesterase, acetylcholine release and potassium currents. In : Alzheimer’s Disease 1990.Google Scholar
  14. Eds Wurtman RJ et al. Advances in Neurology. Vol 51. Raven Press, New York, pp 227–233.Google Scholar
  15. 14.
    Kimenis A. Chinothylinium. In New Neuromuscular Blocking Agents. ed. D A Kharkevich. Handbook of Experimental Pharmacology, 1986, vol 79, Springer-Verlag, Berlin, pp 673–677.CrossRefGoogle Scholar
  16. 15.
    Cervenansky C, Dajas F, Harvey AL, Karlsson E. Fasciculins, anticholinesterase toxins from mamba venoms : biochemistry and pharmacology In Snake Toxins, 1991, ed Harvey AL, Pergamon Press, New York, pp 303–321.Google Scholar
  17. 16.
    Stephens GJ, Garratt JC, Robertson B, Owen DG. On the mechanism of 4-aminopyridine action on the cloned mouse brain potassium channel mKvl.1. J. Physiol. Lond. 1994; 477.2: 187–196.PubMedGoogle Scholar
  18. 17.
    Paskov DS, Agoston S, Bowman WC. 4-Aminopyridine hydrochloride (Pymadin). in New Neuromuscular Blocking Agents. Handbook of Experimental Pharmacology, 1986; vol 79 ed. DA Kharkevich Springer-Verlag, Berlin, pp 679–717.CrossRefGoogle Scholar
  19. 18.
    Stovner J. The anticurare activity of tetraethylammonium (TEA). Aćta Pharmacol (Kbh) 14: 317–323.Google Scholar
  20. 19.
    Harvey AL, Marshall IG. The facilitatory actions of aminopyridines and tetraethylammonium on neuromuscular transmission and muscle contractility in avian muscle. Naunyn-Schmiedebergs Arch. Pharmacol. 1977; 299: 53–60.PubMedCrossRefGoogle Scholar
  21. 20.
    Gibb M, Marshall IG, Bowman WC. Increased tetanic fade produced by 3,4 diaminopyridine in the presence of neuromuscular blocking agents. In : Aminopyridines and similarly acting drugs : effects on nerves, muscles and synapses. Eds Lechat P et al. Advances in the Biosciences 1982, vol 3 5, Pergamon, Oxford, p 216.Google Scholar
  22. 21.
    Bowman WC, Savage AO. Pharmacological actions of aminopyridines and related compounds. Rev. Pure and Appl. Pharmacol. Sci. 1981; 2: 317–371.Google Scholar
  23. 22.
    Miller RD, Booij LHDJ, Agoston S et al. 4-Aminopyridine potentiates neostigmine and pyridostigmine in man. Anesthesiology 1979; 50: 416–420.PubMedCrossRefGoogle Scholar
  24. 23.
    Dunn PM, Blakely AG. Suramin : a reversible P2 purinoceptor antagonist in mouse vas deferens. Br. J. Phrmacol. 1988; 93: 243–245.CrossRefGoogle Scholar
  25. 24.
    Hourani SMO, Chown JA (1989) The effects of some possible inhibitors of ectonucleotidases on the breakdown and pharmacological effects of ATP in the guinea-pig urinary bladder. Gen Pharmacol. 1989; 20: 413–416.PubMedCrossRefGoogle Scholar
  26. 25.
    Henning RH, Nelemans A, Scaf AHJ et al. Suramin reverses non-depolarizing neuromuscular blockade in rat diaphragm. Eur. J. Pharmacol. 1992; 216: 73–79.PubMedCrossRefGoogle Scholar
  27. 26.
    Henning RH, Nelemans A, Houwertjes M, Agoston S. Reversal by suramin of neuromuscular block produced by pancuroniumin in the anaesthetized rat. Br. J. Pharmacol. 1993; 108: 717–720.CrossRefGoogle Scholar
  28. 27.
    Riker WF, Standaert F. The actions of facilitatory drugs on neuromuscular transmission. Ann. N. Y. Acad. Sci. 1966; 135: 164–183.CrossRefGoogle Scholar

Copyright information

© Springer Japan 1995

Authors and Affiliations

  • W. C. Bowman
    • 1
  1. 1.Department of Physiology and PharmacologyUniversity of StarthclydeGlasgowUK

Personalised recommendations