Regulation of Innervation-Related Properties of Cultured Skeletal Muscle Cells by Transmitter and Co-Transmitters

  • R. H. Henning
Conference paper


Long-term interruption of the neuromuscular transmission induces marked changes in properties of skeletal muscle cells. These reversible changes were recognized for the first time in surgically denervated muscle and include the development of supersensitivity to acetylcholine1, the synthesis of extrajunctional nicotinic acetylcholine receptors (nAChRs) of the embryonic type2, depolarization of the membrane potential3 and the appearance of specific Na+- 4 and K+-channels5. Similar changes have been observed after long-term (days) pharmacological interruption of neuromuscular transmission in animals 6,7. Many of the changes in muscle brought about by pharmacological denervation are unfavourable to muscle function and/or influence the sensitivity to muscle relaxants. This has led to the assumption that changed properties of skeletal muscle induced by long-term interruption of neuromuscular transmission contribute to the paralysis syndrome observed in intensive care patients treated for prolonged periods with muscle relaxants8.


Acetylcholine Receptor Skeletal Muscle Cell Neuromuscular Transmission C2C12 Myotubes nAChR Subunit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Thesleff, S., 1960, Effects of motor innervation on the chemical sensitivity of skeletal muscle. Physiol. Rev. 40, 734–752PubMedGoogle Scholar
  2. 2.
    Hartzel, H.O and P.M. Fambrough, 1972, Acetylcholine receptors. Distribution and extrajunctional density in rat diaphragm after denervation correlated with acetylcholine sensitivity. J. Gen. Physiol. 60, 248–262Google Scholar
  3. 3.
    Axelsson, J. and S. Thesleff, 1959, A study of supersensitivity in denervated mammalian skeletal muscle. J. Physiol. (Lond.) 149, 178–193Google Scholar
  4. 4.
    Harris, J.B. and S. Thesleff, 1971, Studies on tetrodotoxin resistant action potentials in denervated skeletal muscle. Acta Physiol. Scand. 83, 382–388PubMedCrossRefGoogle Scholar
  5. 5.
    Schmid-Antomarchi, H., J.F. Renaud, G. Romey, M. Hugues, A. Schmid and M. Lazdunski, 1985, The all-or-none role of innervation in expression of apamin receptor and of apamin-sensitive Ca2+-activated K+-channel in mammalian skeletal muscle. Proc. Natl. Acad. Sci. USA 82, 21288–2191CrossRefGoogle Scholar
  6. 6.
    Berg, D.K. and Z. W. Hall, 1975, Increased extrajunctional acetylcholine sensivity produced by chronic post-synaptic neuromuscular blockade. J. Physiol. (Lond.) 244, 659–676Google Scholar
  7. 7.
    Chang, C.C., S.T. Chuang, and M.C. Huang, 1975, Effects of chronic treatment with various neuromusculair blocking agents on the number and distribution of acetylcholine receptors in the rat diaphragm. J. Physiol. (Lond.) 250, 161–173Google Scholar
  8. 8.
    Agoston S., M. Seyr, K.S. Khuenl-Brady and R.H. Henning, 1993, Neuromuscular blocking agents: use in the ICU. Anesth. Clinics of North America 11, 345–359.Google Scholar
  9. 9.
    Fischbach, G.D. and Robbins, N., 1971, Effect of chronic disuse of rat soleus neuromuscular junctions on postsynaptic membrane. J. Neurophysiol. 34, 562–569PubMedGoogle Scholar
  10. 10.
    Eldridge, L., Liebhold, M. and Steinbach, J.H., 1981, Alterations in cat skeletal neuromuscular junctions following prolonged inactivity. J. Physiol. (Lond.) 313, 529–545Google Scholar
  11. 11.
    Waud, B.E., Amaki, Y. and Waud, D.R., 1985, Disuse and d-Tubocurarine sensitivity in isolated muscles. Anesth. Analg. 64, 1178–82PubMedCrossRefGoogle Scholar
  12. 12.
    Drachman, D.B. and F. Witzke, 1972, Trophic regulation of acetylcholine sensitivity of muscle: effect of electrical stimulation. Science 176, 514–516PubMedCrossRefGoogle Scholar
  13. 13.
    Lavoie, P.A., G. Collier and A. Tennenhouse, 1976, Comparison of a-bungarotoxin binding to skeletal muscles after inactivity or denervation. Nature 260, 349–350PubMedCrossRefGoogle Scholar
  14. 14.
    Pestronk, A, D.B. Drachman and J.W. Griffin, 1976, Effect of muscle disuse on acetylcholine receptors. Nature 260, 352–353PubMedCrossRefGoogle Scholar
  15. 15.
    Mathers, D.A and S. Thesleff, 1978, Studies on neurotrophic regulation of murine skeletal muscle. J. Physiol. (Lond.) 282, 105–114Google Scholar
  16. 16.
    Pestronk, A., D.B. Drachman and J.W. Griffin, 1976, Effect of botulinum toxin on throphic regulation of acetylcholine receptors. Nature 264, 787–789PubMedCrossRefGoogle Scholar
  17. 17.
    Hogue, C.W., J.M. Ward, M.S. Itani and J. A. J. Martyn, 1992, Tolerance and upregulation of acetylcholine receptors follow chronic infusion of d-tubocurarine. J. Appl. Physiol. 72, 1326–1331.PubMedGoogle Scholar
  18. 18.
    Fontaine, B. and J. P. Changeux, 1989, Localization of nicotinic acetylcholine receptor a-subunit transcripts during myogenesis and motor end plate development in the chick. J. Cell. Biol. 108, 1025–1037PubMedCrossRefGoogle Scholar
  19. 19.
    Martinou, J.C. and J.P. Merlie, 1991, Nerve-dependent modulation of acetylcholine receptor ∈-subunit gene expression. J. Neurosci. 11, 1291–1299PubMedGoogle Scholar
  20. 20.
    Mishina, M. T. Takai, K. Imoto, M. Noda, T. Takahashi, S. Numa, C. Methfessel and B. Salmann, 1986, Molecular distinction between fetal and adult forms of muscle acetylcholine receptor. Nature 321, 406–411PubMedCrossRefGoogle Scholar
  21. 21.
    Gu, Y and Z.W. Hall, 1988, Immunological evidence for a change in subunits of the acetylcholine receptor in developing and denervating rat muscle. Neuron 1, 117–125PubMedCrossRefGoogle Scholar
  22. 22.
    Davis, R.L, H. Weintraub and A.B. Lasser, 1987, Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51, 987–1000PubMedCrossRefGoogle Scholar
  23. 23.
    Buonanno, A., L. Apone; M.I. Morasso, R. Beers, H.R. Brenner and R. Eftimie, 1992, The MyoD family of myogenic factors is regulated by electrical activity: isolation and characterization of a mouse Myf-5 cDNA. Nucl. Acids Res. 20, 539–544PubMedCrossRefGoogle Scholar
  24. 24.
    Eftimie, R., H.R. Brenner and A. Buonanno, 1991, Myogenin and Myo D join a family of skeletal muscle genes regulated by electrical activity. Proc. Natl. Acad. Sci. USA 88, 1349–1353PubMedCrossRefGoogle Scholar
  25. 25.
    Fischbach, G.D and S.A. Cohen, 1973, The distribution of acetylcholine sensitivity over uninnervated and innervated muscle fibers grown in cell culture. Dev. Biol. 31, 147–162PubMedCrossRefGoogle Scholar
  26. 26.
    Klarsfeld, A. and J. P. Changeux, 1985, Activity regulates the level of acetylcholine receptor a-subunit mRNA in cultured chicken myotubes. Proc. Natl. Acad. Sci. USA 82, 4558–4562PubMedCrossRefGoogle Scholar
  27. 27.
    Harris, D.A., D.L. Falls, R.M. Dill-Devor and G. D. Fischbach, 1988, Acetylcholine receptor-inducing factor from chicken brain increases the levels of mRNA encoding the receptor a-subunit. Proc. Natl. Acad. Sci. USA 85, 1983–1987PubMedCrossRefGoogle Scholar
  28. 28.
    Inestrosa, N.C., J.B. Miller, L. Silberstein, L. Ziskind-Conhaim and Z. W. Hall, 1983, Developmental regulation of 16S acetylcholinesterase and acetylcholine receptors in a mouse muscle cell line. Exp. Cell. Res. 147, 393–405PubMedCrossRefGoogle Scholar
  29. 29.
    Shainberg, A. and M. Burnstein, 1976, Decrease of acetylcholine receptor synthesis in muscle cultures by electrical stimulation. Nature 264, 368–369PubMedCrossRefGoogle Scholar
  30. 30.
    Pezzementi, L. and J. Smith, 1981, Ryanodine alters the rate of acetylcholine receptor synthesis in chick skeletal muscle cell cultures. J. Biol. Chem. 256, 12651–12654PubMedGoogle Scholar
  31. 31.
    McManamaa, J.L., J.C. Blosser and S. H. Appel, 1982, Inhibitors of membrane depolarization regulate acetylcholine receptor synthesis by a calcium-dependent, cyclic nucleotide-independent mechanism. Biochem. Biophys. Acta 720, 28–35CrossRefGoogle Scholar
  32. 32.
    Smilowitz, H., E. Smart, C. Bowik and R.J. Chang, 1988, Regulation of the number of a-bungarotoxin binding sites in cultured chick myotubes by a 1,4 dihydropyridine calcium channel antagonist. J. Neurosci. Res. 19, 321–325PubMedCrossRefGoogle Scholar
  33. 33.
    Klarsfeld, A., R. Laufer, B. Fontaine, A. Devillers-Thiéry, C. Dubreuil and J.P. Changeux, 1989, Regulation of muscle AChR a subunit gene expression by electrical activity. Involvement of protein kinase C and Ca2+. Neuron 2, 1229–1236PubMedCrossRefGoogle Scholar
  34. 34.
    Betz, H. and J.P. Changeux, 1979, Regulation of muscle acetylcholine receptor synthesis in vitro by cyclic nucleotide derivatives. Nature 278, 749–752PubMedCrossRefGoogle Scholar
  35. 35.
    Fontaine, B., A. Klarsfeld and J.P. Changeux, 1987, Calcitonine gene-related peptide and muscle activity regulate acetylcholine receptor α-subunit mRNA levels by distinct intracellular pathways. J. Cell. Biol. 105, 1337–1342PubMedCrossRefGoogle Scholar
  36. 36.
    Moss, S.J., P.C. Harkness, I.J. Mason, E.A. Bernard and A.W. Mudge, 1991, Evidence that CGRP and cAMP increase transcription of AChR α-subunit gene, but not of other subunits genes. J. Mol. Neurosci 3, 101–108PubMedCrossRefGoogle Scholar
  37. 37.
    Green, W.N., A.F. Ross and T. Claudio, 1991, cAMP stimulation of acetylcholine receptor expression is mediated through posttranslational mechanisms. Proc. Natl. Acad. Sci. USA 88, 854–858PubMedCrossRefGoogle Scholar
  38. 38.
    Henning, R.H., J. Van den Akker, S.A. Nelemans and A. Den Hertog, 1994, Induction of a distinct population of Na+/K+-pumps by long-term stimulation of nicotinic acetylcholine receptors in C2C12 myotubes. Br. J. Pharmacol. 111, 459–464PubMedCrossRefGoogle Scholar
  39. 39.
    Henning, R.H., S.A Nelemans, J. Van den Akker and A. Den Hertog, 1992, The nucleotide receptors on mouse C2C12 myotubes. Br. J. Pharmacol. 106, 853–858PubMedCrossRefGoogle Scholar
  40. 40.
    Henning, R.H., M. Duin, S.A. Nelemans and A. Den Hertog, 1993, Characterization of P2-purinoceptor mediated cyclic AMP formation in C2C12 myotubes. Br. J. Pharmacol. 110, 133–138PubMedCrossRefGoogle Scholar
  41. 41.
    Henning, R.H., M. Duin, A. Den Hertog and S.A. Nelemans, 1993, Activation of the phospholipase C pathway by ATP is mediated exclusively through the nucleotide type P2-purinoceptor in C2C12 myotubes. Br. J. Pharmacol. 110, 747–752PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 1995

Authors and Affiliations

  • R. H. Henning
    • 1
  1. 1.Department of Clinical Pharmacology, Faculty of MedicineUniversity of GroningenGroningenThe Netherlands

Personalised recommendations