Skip to main content

Spontaneous Cerebral Hypothermia After Severe Head Injury: Relation with Brain Chemistry and Cerebrovascular Parameters

  • Conference paper
  • 77 Accesses

Summary

Secondary ischemic events are one of the major causes of bad outcome in patients with severe traumatic brain injury (TBI). Multiple clinical trials testing diverse neuroprotective compounds have so far failed to provide new therapies. Nevertheless, multiple studies using hypothermia have shown evidence of benefit, and the latest results of a U.S. multicenter hypothermia trial are awaited. Meanwhile hypothermia is being used in many neurosurgical centers all over the world and especially in Japan. We therefore retrospectively analyzed patients suffering from TBI with a Glascow Coma Scale (GCS) score of 8 or less. We studied brain temperature using a multiparameter sensor, brain chemistry using microdialysis, intracranial pressure (ICP) using a ventriculostomy, and cerebral blood flow (CBF) using stable-xenon CT. Patients were retrospectively separated into four temperature cohorts according to their brain temperature. Patients with spontaneous hypothermia (Tbr < 36°C) significantly differed from the other cohorts. The mean ICP (P < 0.01), cerebral perfusion pressure (CPP) (P < 0.001), and glutamate P < 0.0004) were significantly higher, whereas the CBF (P < 0.05) and brain glucose were lower. A negative brain temperature-rectal temperature (Trect) difference (ΔTbr-Trect) was correlated with a bad outcome as observed in the patients with spontaneous brain hypothermia and those with therapeutic cooling. When monitoring severely brain-injured patients, spontaneous brain hypothermia and a negative brain to rectal temperature difference (ΔTbr-Trect) represents an indicator of bad outcome and brain chemistry derangement (glutamate, lactate, glucose) and CBF.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams J, Wylie E (1959) Value of hypothermia and arterial occlusion in the treatment of intracranial aneurysms. Surg Gynecol Obstet 108:631–635

    PubMed  CAS  Google Scholar 

  2. Bittar P, Charnay Y, Pellerin L, Bouras C, Magistretti P (1996) Selective distribution of lactate dehydrogenase isoenzymes in neurons and astrocytes of human brain. J Cereb Blood Flow Metab 16:1079

    Article  PubMed  CAS  Google Scholar 

  3. Brunberg J, Reilly E, Doty D (1974) Central nervous system consequences in infants of cardiac surgery using deep hypothermia and circlatory arrest. Circulation 50:60–68

    Google Scholar 

  4. Busto R, Dietrich W, Globus M, Valdes I, Schienberg P, Ginsberg M (1987) Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury. J Cereb Blood Flow Metab 7:729–738

    Article  PubMed  CAS  Google Scholar 

  5. Busto R, Globus M, Dietrich D, Martinez E, Valdes I, Ginsberg M (1989) Effect of mild hypothermia on ischemia-induced release of neurotransmitters and free fatty acids in rat brain. Stroke 20:904–910

    Article  PubMed  CAS  Google Scholar 

  6. Clifton G, Allen S, Barrodale P (1993) A phase II trial of systemic hypothermia in severe head injury. J Neurotrauma 10:263–271

    Article  PubMed  CAS  Google Scholar 

  7. Clifton G, Jiang J, Lyeth B, Jenkins L, Hamm R, Hayes R (1991) Marked protection by moderate hypothermia after experimental traumatic brain injury. J Cereb Blood Flow Metab 11:114–121

    Article  PubMed  CAS  Google Scholar 

  8. Connolly J, Boyd R, Calvin J (1962) The protective effect of hypothermia in cerebral ischemia: experimental and clinical application by selective brain cooling in the human. Surgery 51:15–23

    Google Scholar 

  9. Crowder M, Tempelhoff R, Theard A, Cheng M, Todorov A, Dacey R (1996) Jugular bulb temperature: comparison with brain surface and core temperature in neurosurgical patients during mild hypothermia. J Neurosurg 85:98–103

    Article  PubMed  CAS  Google Scholar 

  10. Dietrich W (1992) The importance of brain temperature in cerebral injury. J Neurotrauma 9:476–485

    Google Scholar 

  11. Dietrich W, Busto R, Globus M, Ginsberg M (1996) Brain damage and temperature: cellular and molecular mechanisms. In: Wieloch BSAT (ed) Cellular and molecular mechanisms of ischemic brain damage. Philadelphia: Lippincott-Raven

    Google Scholar 

  12. Doppenberg E, Zauner A, Bullock R, Ward J (1998) Correlation between brain tissue oxygen tensiom, carbon dioxide, pH and cerebral blood flow: a better way of monitoring the severely injured brain? Surg Neurol (in press).

    Google Scholar 

  13. Drake C, Barr W, Coles S (1964) The use of extracorporeal circulation and profound hypothermia in the treatment of ruptured intracranial aneurysm. J Neurosurg 21:575–581

    Article  PubMed  CAS  Google Scholar 

  14. Ginsberg M, Sternau L, Globus W, Dietrich W, Busto R (1992) Therapeutic modulation of brain temperature: relevance to ischemic brain injury. Cerebrovasc Metab Rev 4:189–225

    CAS  Google Scholar 

  15. Globus M, Alonso O, Dietrich W, Busto R, Ginsberg M (1995) Glutamate release and free radical production following brain injury: effects of posttraumatic hypothermia. Neurochemistry 65:1704–1711

    CAS  Google Scholar 

  16. Hagerdal M, Harp J, Nilsson L, Siesjo B (1975) The effect of induced hypothermia upon oxygen consumption in the rat brain. J Neurochem 24:311–316

    Article  PubMed  CAS  Google Scholar 

  17. Hovda D, Lee S, Smith M, Stuck M, Bergsneider M, Kelly D, Shalmon E, Martin N, Caron M, Mazziotta J, Pheleps M, Becker D (1995) The neurochemical and metabolic cascade following brain injury: moving from animal models to man. J Neurotrauma 12:903–906

    Article  PubMed  CAS  Google Scholar 

  18. Katayama Y, Becker D, Tamura T, Hovda D (1990) M assive increases in extracellular potassium and the indiscriminate release of glutamate following concussive brain injury. J Neurosurg 73:889–900

    Article  PubMed  CAS  Google Scholar 

  19. Katayama Y, Cheung M, Alves A (1989) Ion fluxes and cell swelling in experimental traumatic brain injury: the role of excitatory amino acids. In: Hoff AB JT (ed) Intracranial pressure VII. Berlin: Springer, pp 584–588

    Chapter  Google Scholar 

  20. Lucas J, Emery D, Wang G, Rosenberg L, Jordan R, Gross G (1994) In vivo investigations of the effects of nonfreezing low temperatures on lesioned and uninjured mammalian neurons. J Neurotrauma 11:35–61

    Article  PubMed  CAS  Google Scholar 

  21. Marion D, Leonov Y, Ginsberg M (1996) Resuscitative hypothermia. Crit Care Med 24: S81-S89

    PubMed  CAS  Google Scholar 

  22. Marion D, Obrist W, Carlier P, Penrod L, Darby J (1993) The use of moderate therapeutic hypothermia for patients with severe head injuries: a preliminary report. J Neurosurg 79:354–362

    Article  PubMed  CAS  Google Scholar 

  23. Marion DW, Penrod LE, Kelsey SF, Obrist WD, Kochanek PM, Palmer AM, Wisniewski SR, DeKosky ST (1997) Treatment of traumatic brain injury with moderate hypothermia. N Engl J Med 336:540–546

    Article  PubMed  CAS  Google Scholar 

  24. Mellergard P (1992) Changes in human intracerebral temperature in response to different methods of brain cooling. Neurosurgery 31:671–677

    Article  PubMed  CAS  Google Scholar 

  25. Mellergard P, Nordstrom C (1990) Epidural temperature and possible intracerebral temperature gradients in man. Br J Neurosurg 4:31–38

    Article  PubMed  CAS  Google Scholar 

  26. Mellergard P, Nordstrom C (1991) Intracerebral temperature in neurosurgical patients. Neurosurgery 31:709–713

    Google Scholar 

  27. Mellergard P, Nordstrom C, Christensson M (1990) A method for monitoring intracerebral temperature in neurosurgical patients. Neurosurgery 27:654–657

    Article  PubMed  CAS  Google Scholar 

  28. Metz C, Holzschuh M, Bein T, Woertgen C, Frey A, Frey I, Taeger K, Brawanski A (1996) Moderate hypothermia in patients with severe head injury: cerebral and extracerebral effects. J Neurosurg 85:533–541

    Article  PubMed  CAS  Google Scholar 

  29. Mitani A, Kadoya F, Kataoka K (1991) Temperature dependence of hypoxia induced calcium accumulation in gerbil hippocampal slices. Brain Res 562

    Google Scholar 

  30. Mori K, Maeda M, Miyazaki M, Iwase H (1998) Effects of mild (33°C) and moderate (29°C) hypothermia on cerebral blood flow and metabolism, lactate, and extracellular glutamate in experimental head injury. Neurol Res 20:719–726

    PubMed  CAS  Google Scholar 

  31. Mori K, Maeda M, Miyazaki M, Iwase H (1998) Effects of mild and moderate hypothermia on cerebral metabolism and glutamate in an experimental head injury. Acta Neurochir Suppl 71:222–224

    PubMed  CAS  Google Scholar 

  32. Nakamura T, Nagao S, Kawai N, Honma Y, Kuyama H (1998) Significance of multimodal cerebral monitoring under moderate therapeutic hypothermia for severe head injury. Acta Neurochir Suppl 71

    Google Scholar 

  33. Nara I, Shiogai T, Hara M, Saito I (1998) Comparative effects of hypothermia, barbiturate and osmotherapy for cerebral oxygen metabolism, intracranial pressure and cerebral perfusion pressure in patients with severe head injury

    Google Scholar 

  34. Pellerin L, Magistretti P (1994) Glutamate uptake into astrocytes stimulates aerobic glyco- lisis: a mechanism coupling neuronal activity to glucose utilization. Neurobiology 91:10625–10629

    CAS  Google Scholar 

  35. Person L, Hillered L (1992) Chemical monitoring of neurosurgical intensive care patients using intracerebral microdialysis. J Neurosurg 76:72–80

    Article  Google Scholar 

  36. Safar P, Bircher N (1988) Cardiopulmonary cerebral resucitation: an introduction to resuscitation medicine. In: Guidelines of the World Federation of Societies of Anaesthesiologists, 3rd edn. London: Saunders

    Google Scholar 

  37. Schroeder M, Muizelaar J, Fatouros P, Kuta A, Choi S (1998) Regional cerebral blood volume after severe head injury patients with regional cerebral ischemia. Neurosurgery 42:1276–1279

    Article  Google Scholar 

  38. Shiozaki T, Sugimoto H, Taneda M, Oda J, Tanaka H, Hiraide A, Shimazu T (1009) Selection of severely head injured patients for mild hypothermia therapy. J Neurosurg 89:206–211

    Google Scholar 

  39. Shiraki K, Sagawa S, Tajima F, Yokota A, Hashimoto M, Brengelmann G (1988) Independence of brain and tympanic temperature in unanaesthesized humans. I Appl Physiol 65: 482–486

    CAS  Google Scholar 

  40. Siesjo B (1978) Brain energy metabolism. New York, Wiley

    Google Scholar 

  41. Siesjo B (1981) Cell damage in the brain: a speculative synthesis. J Cereb Blood Flow Metab 1:1981

    Google Scholar 

  42. Weisend M, Feeney D (1994) The relationship between traumatic brain injury induced changes in brain temperature and behavioural and anatomic outcome. J Neurosurg 80:120–132

    Article  PubMed  CAS  Google Scholar 

  43. Zauner A, Doppenberg E, Woodward J, Allen C, Gebrailli S, Young H, Bullock R (1997) Multi- parametric continuous monitoring of brain metabolism and substrate delivery in neurosurgical patients. Neurol Res 19:265–273

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Tokyo

About this paper

Cite this paper

Reinert, M.M., Soukop, J., Zauner, A., Doppenberg, E., Bullock, M.R.R. (2000). Spontaneous Cerebral Hypothermia After Severe Head Injury: Relation with Brain Chemistry and Cerebrovascular Parameters. In: Hayashi, N. (eds) Brain Hypothermia. Springer, Tokyo. https://doi.org/10.1007/978-4-431-66882-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-66882-4_8

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-70277-1

  • Online ISBN: 978-4-431-66882-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics