Advertisement

Novel Cryogenic Dielectric Resonator Devices for Satellite Communication

  • Norbert Klein
  • Svetlana Vitusevych
  • Michael Winter
  • H. R. Yi
Conference paper

Abstract

Ongoing progress in manufacturing dielectric ceramics and single crystals with high dielectric constant and low microwave losses has turned out to be a challenge for the development of novel devices for satellite communication. From this development device performance is expected to benefit for possible device operation temperatures ranging from cryogenic temperatures around 50 — 150 K (achievable with one-stage close cycle refrigerators) over temperatures from 150 to 20OK (in principal achievable with radiation cooling) towards room temperature, if novel dielectric resonator structures with lower loss contribution of the metallic housing would become available.

Keywords

Phase Noise Loss Tangent Cryogenic Temperature Satellite Communication Dielectric Resonator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sparks M et al. 1982, Phys. Rev. B. 26, 6987ADSCrossRefGoogle Scholar
  2. 2.
    Gurevich V L and Tagantsev A K 1991, Adv. Phys. 40, 719ADSCrossRefGoogle Scholar
  3. 3.
    Schornstein S et al. 1997, Inst. Phys. Conf Ser. 158, 267Google Scholar
  4. 4.
    Schornstein S et al. 1998S, IEEE-MTT-S Int. Microwave Symp. Digest, 1319Google Scholar
  5. 5.
    Klein N et al. 1999, IEEE Trans, on Appl. Sup. 9, 3573CrossRefGoogle Scholar
  6. 6.
    Hao L et al. 1999, IEEE Trans. Instr. and Meas. 48, 99Google Scholar
  7. 7.
    Braginsky V B et al. 1987, Phys. Lett. A 120, 300ADSCrossRefGoogle Scholar
  8. 8.
    Alford NMcN 1998, Mat. Res. Soc. Symp. Proc. 500, 183Google Scholar
  9. 9.
    Dick G J et al. 1992, Proc. of the 6th European Frequency and Time Form, 35Google Scholar
  10. Dick G J et al. 1994, IEEE Trans IEEE Trans. UFFC 42, 812CrossRefGoogle Scholar
  11. 10.
    Klein N et al. 1995, J. Appl. Phys. 78, 6683ADSCrossRefGoogle Scholar
  12. 11.
    Tobar M E et al. 1998, J. Appl. Phys. 83, 1604ADSCrossRefGoogle Scholar
  13. 12.
    Zuccaro C et al. 1997, J.Appl. Phys. 82, 5695ADSCrossRefGoogle Scholar
  14. 13.
    Baumfalk A et al 1999, IEEE Trans, on Appl. Sup. 9, 2857CrossRefGoogle Scholar
  15. 14.
    Wakino K et al. 1989, Ferroelectrics 91, 69CrossRefGoogle Scholar
  16. 15.
    Schmidt D and Weiland T 1992, IEEE Trans. Magn. 28, 1793ADSCrossRefGoogle Scholar
  17. 16.
    B Aminov et al. 1999, IEEE Trans, on Appl. Sup. 9, 4185CrossRefGoogle Scholar

Copyright information

© Springer Japan 2000

Authors and Affiliations

  • Norbert Klein
    • 1
  • Svetlana Vitusevych
    • 1
  • Michael Winter
    • 1
  • H. R. Yi
    • 1
  1. 1.Forschungszentrum JülichInstitut für Schicht- und IonentechnikJülichGermany

Personalised recommendations