Advertisement

BSCCO Based Superconductors for Magnet Applications

  • P. F. Herrmann
  • A. Allais
  • J. Bock
  • C. Cottevieille
  • G. Duperray
  • D. Legat
  • A. Leriche
  • J. Melin
  • D. Ryan
  • J. P. Tavergnier
  • C. Tessier
  • T. Verhaege
  • Y. Parasie
Conference paper

Abstract

Industries and Universities are developing various types of BSCCO conductors for magnet and for power applications at intermediate (20–30 K) and at liquid nitrogen temperatures. The optimum application domains of different conductors are briefly addressed. The Bi-2212 conductor represents today the optimum cost versus performance solution for magnet applications in the intermediate temperature range. A review will be given on fabrication of the precursor powders, on conductor fabrication process, on heat treatments and finally on performances of the conductors. Alcatel pursues the development of multifilamentary tape-conductors by the rectangular deformation route. The ultimate test of performances of conductors is of course their use in systems. First applications are today opening in the magnet technology domain. Some aspects on coil fabrication by the complementary R&W and W&R fabrication process are given.

Keywords

Critical Current Precursor Powder Radial Field Magnet Application Intermediate Temperature Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. E. Hellstrom and W. Zhang, Superconducting Glass-Ceramics in Bi-Sr-Ca-Cu-O, (Worid Scient. Publishing Co Pte. Ltd., Singapore, 1997).Google Scholar
  2. 2.
    L.M. Rubin et all. Physica C, 217 [1, 2] 227–33, 1993.ADSCrossRefGoogle Scholar
  3. 3.
    J. Müller et al. Inst. Phys. Conf. Ser. No 158, 1997Google Scholar
  4. Marken et al IEEE Trans, on Appl. Supercond. 7 (2) pp. 2211–4, 1997CrossRefGoogle Scholar
  5. 5.
    E.W. Collings et al. Supercond. Sci. Techn. 12 (2) 87–96, 1999ADSCrossRefGoogle Scholar
  6. Kitaguchi H. et al IEEE Trans, on Appl. Supercond. 9 (2) pp. 1794–9, 1999CrossRefGoogle Scholar
  7. 7.
    Okada et al. IEEE Trans, on Appl. Supercond. 7 (2) pp. 1904–7, 1998Google Scholar
  8. 8.
    P. P. Herrmann et al. IEEE Trans, on Appl. Supercond. 9 (2) pp. 2738–41, 1999CrossRefGoogle Scholar
  9. Février A. et al IEEE Trans. Magn. MAG-25 pp 1496–9, 1989ADSCrossRefGoogle Scholar
  10. 10.
    P.P. Herrmann et al. IEEE Trans, on Appl. Supercond. 7 (2) pp. 2201–6, 1997CrossRefGoogle Scholar
  11. Hoang Y. B. et al EUCAS, Inst. Phys. Conf. Ser. No 158 IOP Publishing pp. 1385–8, 1997 12.Goldacker W et al, IEEE Trans, on Appl. Supercond. 9 (2) pp. 2155–8, 1999Google Scholar
  12. P. P. Herrmann et al, to be published in proceedings of EUCAS conference held in Sitges (Barcelona), September 14–17, 1999 Paper: 8AGoogle Scholar
  13. 14.
    Strobridge, Design concepts for superconducting cables, EPRI report TR103631, 1994Google Scholar
  14. 15.
    T. Hase et al. “Operation of superconductivity jointed Bi-2212 solenoidal coil in persistent current mode” Cryogenics 37 (2) pp. 201–6, 1997CrossRefGoogle Scholar

Copyright information

© Springer Japan 2000

Authors and Affiliations

  • P. F. Herrmann
    • 1
  • A. Allais
    • 1
  • J. Bock
    • 2
  • C. Cottevieille
    • 1
  • G. Duperray
    • 1
  • D. Legat
    • 1
  • A. Leriche
    • 1
  • J. Melin
    • 1
  • D. Ryan
    • 3
  • J. P. Tavergnier
    • 1
  • C. Tessier
    • 1
  • T. Verhaege
    • 1
  • Y. Parasie
    • 4
  1. 1.AlcatelMarcoussisFrance
  2. 2.Alcatel HTSHürthGermany
  3. 3.AlcatelParisFrance
  4. 4.Oxford Instruments OxfordshireEngland

Personalised recommendations