Advertisement

Identification of Vortex Pinning Centers in Melt Textured ReBa2Cu3O7 (Re = Y,Nd)

  • X. Obradors
  • T. Puig
  • B. Martínez
  • F. Sandiumenge
  • J. Rabier
Conference paper

Abstract

Melt textured single domain ReBa2Cu3O7 (Re = Y,Nd) samples were post-processed, either under high oxygen pressure (PO2 ≤180 bar) or under cold isostatic pressing (CIP) conditions. We show that CIP processing can lead to critical current enhancements up to 100% at 77K. The analysis of the evolution of the microstructure by TEM allows us to attribute the enhanced pinning to 1/6[031] partial dislocations which are distributed anisotropically within the (001) plane. In Nd123/422 composites we demonstrate that high oxygen pressure annealing enhances interface pinning in parallel with a reduction of the fishtail anomaly due to the presence of Nd-Ba antisite defects.

Keywords

Stack Fault Energy Critical Current Density Partial Dislocation Antisite Defect Cold Isostatic Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Murakami M, (1993) “Processing and Properties of High Tc Superconductors”, vol. 1, Ed. S. Jin, Singapore World Scientific, Ch 6, pp 215–268Google Scholar
  2. 2.
    Sandiumenge F, Martinez B and Obradors X (1997) Supercond. Sci. Technol. 10: A93–A119ADSCrossRefGoogle Scholar
  3. 3.
    Yoo SI, Sakai N, Higuchi T and Murakami M (1994) Appl. Phys. Lett. 65: 633–635ADSCrossRefGoogle Scholar
  4. 4.
    Ting W, Egi T, Kuroda K, Koshizuka N and Tanaka S (1997) Appl.Phys.Lett. 70: 770–772ADSCrossRefGoogle Scholar
  5. 5.
    Puig T, Obradors X, Martinez B and Alonso JA (1998) Physica C 308: 115–122ADSCrossRefGoogle Scholar
  6. 6.
    Richard L, Denanot MF, Rabier J, Sandiumenge F, Rodriguez E, Martinez B and Obradors X (1998) Physica C301:129–140ADSGoogle Scholar
  7. 7.
    Ullrich M, Leenders A, Frelaus J, Kautschor LO, Freyhardt HC, Schmidt L, Sandiumenge F and Obradors X (1998) Mater. Science and Eng. B53: 143–148CrossRefGoogle Scholar
  8. 8.
    Martinez B, Richard L, Sandiumenge F, Puig T, Rabier J and Obradors X (1999) Appl. Phys. Lett. 74: 73–75ADSCrossRefGoogle Scholar
  9. 9.
    Martinez B, Obradors X, Gou A, Gomis V, Piňol S, Fontcuberta J and Van Tol H (1996) Phys. Rev. B 53: 2797–2810ADSCrossRefGoogle Scholar
  10. 10.
    Nelson DR and Vinokur VM (1993) Phys. Rev. B 48: 13060–13097ADSCrossRefGoogle Scholar
  11. 11.
    Yu R, Sandiumenge F, Martinez B, Vilalta and Obradors X (1997) Appl. Phys. Lett. 71: 413ADSCrossRefGoogle Scholar
  12. 12.
    Murakami M, Sakai N, Chikumoto N, Kojo H, Higuchi T and Yoo SI (1997) Physica C282–287: 371–374ADSGoogle Scholar
  13. 13.
    Takita K, Akinaga H, Ohshima Y, Takeda Y and Takano M (1992) Physica C 191: 509–514ADSCrossRefGoogle Scholar

Copyright information

© Springer Japan 1999

Authors and Affiliations

  • X. Obradors
    • 1
  • T. Puig
    • 1
  • B. Martínez
    • 1
  • F. Sandiumenge
    • 1
  • J. Rabier
    • 2
  1. 1.Institut de Ciència de Materials de Barcelona, CSICCampus Universitat Autònoma de BarcelonaBellaterraSpain
  2. 2.Laboratoire de Metallurgie PhysiqueUniversité de PoitiersFuturoscope CedexFrance

Personalised recommendations