Advertisement

Structural Study on the Copper Oxyhalide Sr-Ca-Cu-O-Cl System

  • X.-J. Wu
  • C.-Q. Jin
  • T. Tatsuki
  • T. Tamura
  • S. Adachi
  • K. Tanabe
Conference paper

Abstract

Samples of copper oxyhalide of the Sr-Ca-Cu-O-Cl system have been synthesized using a high pressure synthesis technique. X-ray and electron diffraction analyses and high resolution transmission electron microscopic observation have revealed the formation of a homologous series, 02(n-l)n, in this system. The crystal structure of a nearly single phase (Sr,Ca)3Cu2O4+xCl2-y is determined by x-ray Rietveld refinement. Based on these crystallographic data, a general model is suggested for the 02(n-l)n series. The simulated x-ray diffraction pattern for 0223 by this model shows a rather good agreement with the measured one. Meanwhile, a new phase 0435, which actually was formed by a regular intergrowth of 0212 and 0223, has been observed by TEM, too. Since the intergrowth of 0223 and 0234 has been observedin the local area, a general model for a new homologous series, 04(2n-l)(2n+l) (or [02(n-l)n+02n(n+l)]), is proposed. Some of our samples showed superconductivity in a range of 60–80 K. Considering the present crystal structure, we propose that the carriers are induced by anion substitution in the apical position for this Sr-Ca-Cu-O-Cl system.

Keywords

Homologous Series Apical Position Anion Substitution Half Unit Cell Field Cool Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Muller-Buschbaum, (1977) Angew. Chem. Int. Ed. Engl. 16 674, and the references therein.CrossRefGoogle Scholar
  2. [2]
    Y. Shimakawa, J.D. Jorgensen, J.F. Mitchell, B.A. Hunter, H. Shaked, D.G. Hinks, R.L. Hitterman, Z. Hiroi and M. Takano, (1994) Physica C 228 73.ADSCrossRefGoogle Scholar
  3. [3]
    M. Al-Mamouri, P. P. Edwards, C. Greaves and M. Slaski, (1994) Nature 369 382.ADSCrossRefGoogle Scholar
  4. [4]
    L. L. Miller, X. L. Wang, S. X. Wang, C. Stassis and D. C. Johnston, (1990) Phys. Rev. B 41 1921.ADSCrossRefGoogle Scholar
  5. [5]
    Z. Hiroi, N. Kobayashi and M. Takano, (1994) Nature 371 139.ADSCrossRefGoogle Scholar
  6. [6]
    H. Yamauchi, T. Tamura, X.-J. Wu, S. Adachi and S. Tanaka, (1995) Jpn. J. Appl. Phys. 34 L349.ADSCrossRefGoogle Scholar
  7. [7]
    S. Adachi, H. Yamauchi, S. Tanaka and N. Môri, (1993) Physica C 212 164.ADSCrossRefGoogle Scholar
  8. [8]
    P. Laffez, X.-J. Wu, S. Adachi, H. Yamauchi and N. Môri, (1994) Physica C 222 303.ADSCrossRefGoogle Scholar
  9. [9]
    Z. Hiroi, M. Takano, M. Asuma and Y. Takeda, (1993) Nature 364 315.ADSCrossRefGoogle Scholar
  10. [10]
    C.-Q. Jin, X.-J. Wu, P. Laffez, T. Tatsuki, T. Tamura, S. Adachi, H. Yamauchi, N. Koshizuka and S. Tanaka, (1995) Nature 375 301.ADSCrossRefGoogle Scholar

Copyright information

© Springer Japan 1996

Authors and Affiliations

  • X.-J. Wu
    • 1
  • C.-Q. Jin
    • 1
  • T. Tatsuki
    • 1
  • T. Tamura
    • 1
  • S. Adachi
    • 1
  • K. Tanabe
    • 1
  1. 1.Superconductivity Research LaboratoryInternational Superconductivity Technology CenterKoto-Ku, Tokyo 135Japan

Personalised recommendations