Advertisement

Chemical Stabilization and Flux Pinning in Hg-Based Superconductors

  • K. Kishio
  • J. Shimoyama
  • K. Yamaura
  • Z. Hiroi
  • M. Takano
  • O. Chmaissem
  • J. D. Jorgensen

Abstract

Effect of chemical stabilization by substitution of a small amount (0.1~0.25) of rhenium (Re) ion on the Hg-site in HgM2Can-1Cun0y (M=Ba or Sr, n=l~4) has been studied. The flux pinning behavior in these Hg-based compounds has been enhanced substantially compared to the undoped parent materials. By a neutron diffraction analysis on the Hg(Re)SrCaCuO (n=2,3) compounds, Re was found to occupy the Hg-site with octahedrally fully coordinated oxygen ions, giving rise to the stabilization of Hg(Re)0 plane and shortening of the blocking layer thickness. At the same time, the Re ion whose binary oxide ReOß is extremely conductive, is considered to contribute to the better electrical conduction along the c-axis direction. These factors should be quite effective in increasing the interlayer superconducting coupling strength via the decrease in the electromagnetic anisotropy. Observation by HRTEM has also suggested a possibility of microscopic segregation of Re ions in the HgO plane, which might act as effective pinning centers of the flux lines in the mixed state.

Keywords

High Resolution Transmission Electron Microscope High Resolution Transmission Electron Microscope Binary Oxide Flux Line Irreversibility Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Putilin SN, Antipov EV, Chmaissem O, Marezio M (1993) Nature 362: 226.ADSCrossRefGoogle Scholar
  2. 2.
    Schilling A, Cantoni M, Guo JD, Ott HR (1993) Nature 363: 56.ADSCrossRefGoogle Scholar
  3. 3.
    Antipov EV, Loureiro SM, Challiout C, Capponi JJ, Bordet P, Tholence JL, Putilin SN (1993) Physica C215: 1.ADSGoogle Scholar
  4. 4.
    Welp U, Crabtree GW, Wagner JL, Hinks DG, Radaelli PG, Jorgensen JD, Mitchell JF (1993) Appl. Phys. Lett. 63: 693.ADSCrossRefGoogle Scholar
  5. 5.
    Umezawa A, Zhang W, Grevich A, Feng Y, Hellstrom EE, Larbalestier DC, (1993) Nature 364: 129.ADSCrossRefGoogle Scholar
  6. 6.
    Shimoyama J, Hahakura S, Kitazawa K, Yamafuji K, Kishio K (1994) Physica C224: 1.ADSGoogle Scholar
  7. 7.
    Hahakura S, Shimoyama J, Shiino 0, Kishio K (1994) Physica C233: 1.ADSGoogle Scholar
  8. 8.
    Yamaura K, Shimoyama J, Hahakura S, Hiroi Z, Takano M, Kishio K (1995) Physica C246: -351.ADSGoogle Scholar
  9. 9.
    Shimoyama J, Kishio K, Hahakura S, Kitazawa K, Yamaura K, Hiroi Z, Takano M (1994) “Adv. in Superconductivity VIP: 287.Google Scholar
  10. 10.
    Shimoyama J, Hahakura S, Kobayashi R, Kitazawa K, Yamafuji K, K. Kishio (1994) Physica C235–240: 2795.Google Scholar
  11. 11.
    Chmaissem O, Jorgensen JD, Yamaura K, Hiroi Z, Takano M, Shimoyama J, Kishio K (1996) Phys. Rev. B, to be published.Google Scholar
  12. 12.
    Hiroi Z, Shimoyama J, Kishio K (1996) Physica C: in press.Google Scholar
  13. 13.
    Kishio K (1996) in “Coherence in Superconductors”, Eds. G. Deutscher and A. Revcolevschi, World Scientific, Singapore, in press.Google Scholar

Copyright information

© Springer Japan 1996

Authors and Affiliations

  • K. Kishio
    • 1
  • J. Shimoyama
    • 1
  • K. Yamaura
    • 2
  • Z. Hiroi
    • 2
  • M. Takano
    • 2
  • O. Chmaissem
    • 3
  • J. D. Jorgensen
    • 3
  1. 1.Department of Applied ChemistryUniversity of TokyoBunkyo-ku, Tokyo 113Japan
  2. 2.Institute for Chemical ResearchKyoto UniversityUji, Kyoto-fu 611Japan
  3. 3.Materials Science DivisionArgonne National LaboratoryArgonneUSA

Personalised recommendations