Boson Physics and Vortex Pinning Via Splayed Columnar Defects in Superconductors

  • David R. Nelson
Conference paper


Concepts from many particle nonrelativistic quantum mechanics can be used to understand vortex line fluctuations in high-temperature superconductors. Flux lines are essentially classical objects, described by a string tension, their mutual repulsion, and interactions with pinning centers. The classical partition function, however, is isomorphic to the imaginary time path integral description of boson quantum mechanics. Recent double-sided decoration experiments in BSCCO compounds in a frozen flux liquid state have now revealed the “phonon-roton” spectrum which describes the decay of density fluctuations along the field direction. Parallel columnar pins lead to a low temperature “Bose glass” phase. Controlled splay of artificial columnar defects in cuprate superconductors can enhance transport properties in a field compared to parallel columns. The theory predicts a new “splayed glass” characterized by a greatly reduced flux creep and an entangled ground state similar to dislocation tangles in a work hardened metal. Recent experiments suggest that controlled splay leads to significant improvements in critical currents.


Vortex Line Flux Line Cuprate Superconductor Barium Copper Columnar Defect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Blatter, M.V. Feigelman, V.B. Geshkenbein, A.I. Larkin and V.M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994).ADSCrossRefGoogle Scholar
  2. 2.
    A.A. Abrikosov, Zh. Eksperim. i. Theor. Fix. 32, 1442 (1957)Google Scholar
  3. 2a.
    A.A. Abrikosov, [Sov. Phys. JETP 5, 1174 (1957)].Google Scholar
  4. 3.
    M. Charalambous, J. Chaussy and P. Lejay, Phys. Rev. B45, 45 (1992).Google Scholar
  5. 4.
    W.K. Kwok, S. Fleshier, U. Welp, V.M. Vinokur, J. Downey, G.W. Crabtree and M.M. Miller, Phys. Rev. Lett. 69, 3370 (1992).ADSCrossRefGoogle Scholar
  6. 5.
    D.E. Farrell, J.P. Rice and D.M. Ginsberg, Phys. Rev. Lett. 67, 1165 (1991).ADSCrossRefGoogle Scholar
  7. 6.
    H. Safar, P.L. Gammel, D.A. Huse, D.J. Bishop, J.P. Rice and D.M. Ginsberg, Phys. Rev. Lett. 69, 824 (1992).ADSCrossRefGoogle Scholar
  8. 7.
    E. Brezin, D.R. Nelson and A. Thiaville, Phys. Rev. B31, 7124 (1985).ADSGoogle Scholar
  9. 8.
    E. Zeldov, D. Majer, M. Konczykowski, V.B. Geshkenbein, V.M. Vinokur and H. Strikman, Nature 375, 373 (1995).ADSCrossRefGoogle Scholar
  10. 9.
    D.R. Nelson and P. Le Doussal, Phys. Rev. B42, 10112 (1991).Google Scholar
  11. 10.
    D.S. Fisher, M.P.A. Fisher and D.A. Huse, Phys. Rev. B43, 130 (1991).ADSGoogle Scholar
  12. 11.
    R.C. Budhani, M. Suenaga and H.S. Liou, Phys. Rev. Lett. 69, 3816 (1992).ADSCrossRefGoogle Scholar
  13. 12.
    M. Konczykowski et al. , Phys. Rev. B44, 7167 (1991).ADSGoogle Scholar
  14. 13.
    L. Civale et al. , Phys. Rev. Lett. 67, 648 (1991).ADSCrossRefGoogle Scholar
  15. 14.
    W. Gerhauser et al. , Phys. Rev. Lett. 68, 879 (1992).ADSCrossRefGoogle Scholar
  16. 15.
    V. Hardy et al. , Nucl. Instr. and Meth. B54, 472 (1991). ADSGoogle Scholar
  17. 16.
    D.R. Nelson and V.M. Vinokur, Phys. Rev. B48, 13060 (1993).ADSGoogle Scholar
  18. 17.
    R.P. Feynman and A.R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965);MATHGoogle Scholar
  19. 17a.
    R.P. Feynman, Statistical Mechanics (Benjamin, Reading, MA, 1972).Google Scholar
  20. 18.
    D.R. Nelson, Phys. Rev. Lett. 60, 1973 (1988);MathSciNetADSCrossRefGoogle Scholar
  21. 18a.
    D.R. Nelson and S. Seung, Phys. Rev. B39, 9153 (1989).ADSGoogle Scholar
  22. 19.
    D.R. Nelson, in Phenomenology and Applications of High-Temperature Superconductors, edited by K. Bedell et al. (Addison-Wesley, New York, 1991); andGoogle Scholar
  23. 19a.
    D.R. Nelson, in The Vortex State, edited by N. Bontemps et al. (Kluwer, Boston, 1994).Google Scholar
  24. 20.
    S. Yoon, Z. Yao, H. Dai and C. Lieber, Science 270, 270 (1995);ADSCrossRefGoogle Scholar
  25. 20a.
    see also Z. Yao, S. Yoon, H. Dai, S. Fan and C.M. Lieber, Nature 371, 777 (1994).ADSCrossRefGoogle Scholar
  26. 21.
    M.C. Marchetti and D.R. Nelson, Phys. Rev. B47, 214 (1993);Google Scholar
  27. 21a.
    M.C. Marchetti and D.R. Nelson, Phys. Rev. B52, 7720 (1995).ADSGoogle Scholar
  28. 22.
    T. Hwa, P. Le Doussal, D.R. Nelson and V.M. Vinokur, Phys. Rev. Lett. 71, 3545 (1993);ADSCrossRefGoogle Scholar
  29. 22a.
    P. Le Doussal and D.R. Nelson, Physica C232, 69 (1994).ADSGoogle Scholar
  30. 23.
    L. Krusin-Elbaum, A.D. Marwick, R. Wheeler, C. Feild, V.M. Vinokur, G.K. Leaf and M. Palumbo, IBM. T.J. Watson Laboratory preprint. Interestingly, Gaussian splay was found to be less effective than a simple bimodal splay at ±5° in this experiment.Google Scholar

Copyright information

© Springer Japan 1996

Authors and Affiliations

  • David R. Nelson
    • 1
  1. 1.Lyman Laboratory of PhysicsHarvard UniversityCambridgeUSA

Personalised recommendations