High-Tc Ramp-Type Josephson Junctions with PrBa2Cu3-xGaxO7-δ barrier

  • H. Rogalla
  • M. A. J. Verhoeven
  • G. K. van Ancum
  • D. H. A. Blank
  • G. Gerritsma
Conference paper


Superconducting three terminal devices [1] of sufficient current and voltage gain and integrability are not yet available, so Josephson junctions are still the basic active elements in superconducting electronics. In recent years a lot of effort has been put into the development of reproducible high-Tc Josephson junctions — with mixed success. Even though Josephson behaviour can easily be demonstrated in very simple configurations, the fabrication of reproducible junctions is still quite a problem and is not yet sufficient for medium or large scale levels of integration. Apart from a lack of the understanding of the basic mechanisms of high-Tc superconductivity, also the charge transport properties in high-Tc Josephson junctions are not yet fully understood. This, together with the extremely short coherence length of the order of the chemical binding length and the difficulties in preparing these materials, resulted in junction realisations that were quite often intrinsically complicated and not well understood in their physical behaviour but showed reasonably good current-voltage characteristics, e.g. the different types of grain boundary junctions [2]. In contrast, junctions with simple artificial barriers like normal conductor barriers made of Ag between YBa2Cu3O7-δ show a quite reproducible behaviour if the interface between YBa2Cu3O7-δ and the barrier is reasonably clean [3]. Due to the SNS characteristics and the low normal resistance of these junctions they are only useful for a very limited number of applications.


Critical Current Density Josephson Junction Decay Length Barrier Thickness Transmission Line Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    see e.g., Mannhart J (1995) Superconductor Science and Technology 8, 1–19CrossRefGoogle Scholar
  2. 2.
    Gross R, Alff L, Beck A, Frohlich OM, Gerber R, Gerdemann R, Marx A, Mayer B and Koelle D (1995) Proceedings of the 2nd Workshop on HTS Appl. and New Materials. Twente University, Netherlands, pp 8–15Google Scholar
  3. 3.
    Ono RH, Vale LR, Kimminau KR, Beall JA, Cromar MW, Reintsma CD, Hravey TE, Rosenthal PA and Rudmen DA (1993) IEEE Trans. Appl. Superconductivity 3: 2389ADSCrossRefGoogle Scholar
  4. 4.
    Barner JB, Rogers CT, Inam A, Ramesh R and Bersey S (1991) Appl.Phys.Lett. 59: 742ADSCrossRefGoogle Scholar
  5. 5.
    Akoh H, Sato H, and Takada S (1995) IEEE Trans. Appl. Superconductivity 5: 2373CrossRefGoogle Scholar
  6. 6.
    Terpstra D, Rijnders AJHM, Roesthuis FJG, Blank DHA, Gerritsma GJ and Rogalla H (1993) J. of Alloys and Compounds 195: 719CrossRefGoogle Scholar
  7. 7.
    Verhoeven MAJ, Moerman R, Bijlsma ME, Rijnders AJHM, Blank DHA, Gerritsma GJ and Rogalla H (1995) submitted to Appl.Phys.LettersGoogle Scholar
  8. 8.
    Verhoeven MAJ, Gerritsma GJ and Rogalla H (1995) Proceedings EUCAS 95Google Scholar
  9. 9.
    van Ancum GK, Verhoeven MAJ, Blank DHA and Rogalla H (1995) Phys.Rev. B52: 5598ADSGoogle Scholar
  10. 10.
    van Ancum GK, Verhoeven MAJ, Blank DHA and Rogalla H (1995) Phys.Rev. B52: 5644Google Scholar
  11. 11.
    Berger HH (1972) Solid State Electron. 15:145ADSCrossRefGoogle Scholar
  12. 12.
    Mott NF and Davis EA (1979) Electronic Processes in Non-Crystalline Materials. Clarendon. Oxford.Google Scholar
  13. 13.
    see e.g., Shklovskii BI and Efros AL (1984) Electronic Prop, of Doped Semiconductors. Springer Verlag.Berlin.CrossRefGoogle Scholar
  14. 14.
    van Ancum GK (1996) Electronic Transport Properties of PrBa2Cu3O7-δ. Thesis. UTwente, the Netherlands.Google Scholar
  15. 15.
    Kabasawa U, Tarutani Y, Fukazawa T, Hiratani M and Takagi K (1993) Phys.Rev.Lett. 70: 1700ADSCrossRefGoogle Scholar
  16. 16.
    Verhoeven MAJ, Gerritsma GJ and Rogalla H (1995) submitted to Phys.Rev.LettersGoogle Scholar
  17. 17.
    Radousky HD (1992) J.Mater.Res. 7: 1917ADSCrossRefGoogle Scholar
  18. 18.
    Xu Y and Guan W (1993) Physica C 206: 59ADSCrossRefGoogle Scholar
  19. 19.
    Xiao G (1988) Nature 332: 238ADSCrossRefGoogle Scholar

Copyright information

© Springer Japan 1996

Authors and Affiliations

  • H. Rogalla
    • 1
  • M. A. J. Verhoeven
    • 1
  • G. K. van Ancum
    • 1
  • D. H. A. Blank
    • 1
  • G. Gerritsma
    • 1
  1. 1.University of TwenteEnschedeThe Netherlands

Personalised recommendations