Size and Structure Effects

  • Nobuyuki Nishi


The functionality of molecules cannot be discussed without considering the role of environmental molecules. Since 1980 the role of environmental molecules has been studied in terms of molecular clusters. This chapter considers some typical examples that demonstrate the size-dependence of proton transfer reactions, the size-dependence of the location of two positive charges in molecular clusters, and structure generation of environmental molecules around solute species. The last topic is particularly important for analyzing molecular functionality in an aqueous environment.


Proton Transfer Water Cluster Proton Affinity Molecular Cluster Proton Transfer Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rose J (1961) Dynamic physical chemistry. Pitman, LondonGoogle Scholar
  2. 2.
    Caldin EF, Gold V (eds) (1975) Proton transfer reactions. Chapman and Hall, LondonGoogle Scholar
  3. 3.
    Weller A (1958) Protolytische reaktionen angeregter oxyverbindungen. Z Phys Chem Neue Folge 17:224–245CrossRefGoogle Scholar
  4. 4.
    Nagakura S (1954) Study on hydrogen bonding by near UV absorption spectroscopy. J Chem Soc Jpn 75:734–737Google Scholar
  5. 5.
    Harris CM, Seiinger BK (1980) Acid-base properties of 1-naphthol. Proton-induced fluorescence quenching. J Phys Chem 84:1366–1371CrossRefGoogle Scholar
  6. 6.
    Hara K, Baba H (1975) Photodissociation of α-naphthol in solution: Influence of hydrogen bonding. 71:1100–1108Google Scholar
  7. 7.
    Cheshnovsky O, Leutwyler S (1985) Excited-state proton transfer in neutral microclusters: α-naphthol (NH3). Chem Phys Lett 121:1–8CrossRefGoogle Scholar
  8. 8.
    Cheshnovsky O, Leutwyler S (1988) Proton transfer in neutral gas-phase clusters: α-naphthol. J Chem Phys 88:4127CrossRefGoogle Scholar
  9. 9.
    Lias SG, Ausloos P (1975) Ion-molecule reactions. American Chemical Society, Washington, DCGoogle Scholar
  10. 10.
    Jouvet C, Lardeux-Dedonder C, Richard-Viard M, Solgadi D, Tramer A (1990) Reactivity of molecular clusters in the gas phase. Proton transfer reaction in neutral phenol-(C2H5NH2)n. J Phys Chem 94:5041–5048CrossRefGoogle Scholar
  11. 11.
    Kim SK, Li S, Bernstein ER (1991) Excited-state intermolecular proton transfer in isolated clusters: 1-naphthol/ammonia and water. J Chem Phys 95:3119–3128CrossRefGoogle Scholar
  12. 12.
    Breen JJ, Peng LW, Willberg DM, Heikal A, Cong P, Zewail AH (1990) Real-time probing of reactions in clusters. J Chem Phys 92:805–807CrossRefGoogle Scholar
  13. 13.
    Hineman MF, Brucker GA, Kelley DF, Bernstein ER (1992) Excited-state proton transfer in 1-naphthol/ammonia clusters. J Chem Phys 97:3341–3347CrossRefGoogle Scholar
  14. 14.
    Knochenmuss R, Leutwyler S (1989) Proton transfer from 1-naphthol to water: Small cluster to the bulk. J Chem Phys 91:1268–1278CrossRefGoogle Scholar
  15. 15.
    Steadman J, Syage JA (1990) Picosecond mass-selective measurements of phenol-(NH3)n acid-base chemistry in clusters. J Chem Phys 92:4630–4633CrossRefGoogle Scholar
  16. 16.
    Steadman J, Syage JA (1991) Time-resolved study of phenol proton transfer in clusters. 3. Solvent structure and ion-pair formation. J Phys Chem 95:10326–10331CrossRefGoogle Scholar
  17. 17.
    Syage JA, Steadman J (1992) Probing double-minima ion-molecule reaction coordinates by photoelectron spectroscopy of clusters: PhOH+ + NH3 → PhO + NH4+. J Phys Chem 96:9606–9608CrossRefGoogle Scholar
  18. 18.
    Syage JA (1993) Tunneling mechanism for excited-state proton transfer in phenol–ammonia clusters. J Phys Chem 97:12523–12529CrossRefGoogle Scholar
  19. 19.
    Hineman MF, Kelley DF, Bernstein ER (1993) Proton transfer dynamics and cluster ion fragmentation in phenol/ammonia clusters. J Chem Phys 99:4533–4538CrossRefGoogle Scholar
  20. 20.
    Volpel R, Hofmann G, Steidl M, Stenke M, Schlapp M, Trassl R, Salzborn E (1993) Ionization and fragmentation of fullerene ions by electron impact. Phys Rev Lett 71:3439–3441CrossRefGoogle Scholar
  21. 21.
    Sattler K, Muhlbach J, Echt O, Pfau P, Recknagel E (1981) Evidence for Coulomb explosion of doubly charged microclusters. Phys Rev Lett 47:160–163CrossRefGoogle Scholar
  22. 22.
    Ohashi K, Nishi N (1992) Photodissociation spectroscopy on charge resonance band of (C6H6)2+ and (C6H6)3+. J Phys Chem 96:2931–2932CrossRefGoogle Scholar
  23. 23.
    Ohashi K, Nakai Y, Shibata T, Nishi N (1992) Photodissociation spectroscopy of (C6H6)2+. Laser Chem 14:3–14CrossRefGoogle Scholar
  24. 24.
    Schriver KE, Hahn MY, Whetten RL (1987) Exciton fusion in molecular clusters. Phys Rev Lett 59:1906–1909CrossRefGoogle Scholar
  25. 25.
    Schriver KE, Paguia AJ, Hahn MY, Honea EC, Whetten RL (1987) Are clusters of nonpolar molecules icosahedral? J Phys Chem 91:3131CrossRefGoogle Scholar
  26. 26.
    Stace AJ (1988) Evidence of two stable forms of doubly and triply charged water clusters. Phys Rev Lett 61:306–309CrossRefGoogle Scholar
  27. 27.
    Stace AJ (1990) Possible ion pairs in multiply charged water clusters Chem Phys Lett 174:103–107CrossRefGoogle Scholar
  28. 28.
    Stace AJ, Shukla AK (1982) Preferential solvation of hydrogen ions in mixed clusters of water, methanol, and ethanol. J Am Chem Soc 107:5314CrossRefGoogle Scholar
  29. 29.
    Nagashima U, Shinohara H, Nishi N, Tanaka H (1986) Enhanced stability of ion-clathrate structure of magic number water clusters. J Chem Phys 84:209CrossRefGoogle Scholar
  30. 30.
    Coolbaugh MT, Peifer WR, Garvey JF (1989) Ion-molecule chemistry within doubly charged ammonia clusters. Chem Phys Lett 156:19–23CrossRefGoogle Scholar
  31. 31.
    Frank HS, Wen WY (1957) Structural aspects of ion-solvent interaction in aqueous solutions: A suggested picture of water structure. Discuss Faraday Soc 24:133CrossRefGoogle Scholar
  32. 32.
    Franks F, Ives DJG (1966) The structural properties of alcohol-water mixtures. Q Rev Chem Soc 20:1–44CrossRefGoogle Scholar
  33. 33.
    Nakanishi K, Ikan K, Okazaki S, Touhara H (1984) Computer experiments on aqueous solutions. III. Monte Carlo calculation on the hydration of tertiary butyl alcohol in an infinitely dilute aqueous solution with a new water-butanol pair potential. J Chem Phys 80:1656–1670CrossRefGoogle Scholar
  34. 34.
    Ben-Naim A (1974) Water and aqueous solutions. Plenum Press, New York, p 365CrossRefGoogle Scholar
  35. 35.
    Ben-Naim A (1980) Hydrophobic interactions. Plenum Press, New YorkCrossRefGoogle Scholar
  36. 36.
    Ben-Naim A (1989) Solvent-induced interactions: Hydrophobic and hydrophilic phenomena.J Chem Phys 90:7412–7425CrossRefGoogle Scholar
  37. 37.
    Eisenberg D, Kauzmann W (1969) The structure and properties of water. Oxford University Press, OxfordGoogle Scholar
  38. 38.
    Tanford C (1976) The hydrophobic effect. Wiley, New YorkGoogle Scholar
  39. 39.
    Smith DE, Haymet ADJ (1993) Free energy, entropy, and internal energy of hydrophobic interactions: Computer simulations: J Chem Phys 98:6445–6454CrossRefGoogle Scholar
  40. 40.
    Ben-Naim A, Yaacobi M (1974) Effects of solutes on the strength of hydrophobic interaction and its temperature dependence. J Phys Chem 78:170–175CrossRefGoogle Scholar
  41. 41.
    Yaacobi M, Ben-Naim A (1974) Solvophobic interaction. J Phys Chem 78:175–178CrossRefGoogle Scholar
  42. 42.
    Nishi N, Takahashi S, Matsumoto M, Tanaka A, Muraya K, Takamuku T, Tamaguchi T (1995) Hydrogen-bonding cluster formation and hydrophobic solute association in aqueous solution of ethanol. J Phys Chem 99:462–468CrossRefGoogle Scholar
  43. 43.
    Soper AK, Finney JL (1993) Hydration of methanol in aqueous solution. Phys Rev Lett 71:4346–4349CrossRefGoogle Scholar
  44. 44.
    Finney JL, Soper AK (1994) Solvent structure and perturbations in solution of chemical and biological importance. Chem Soc Rev 1–10Google Scholar
  45. 45.
    Nishi N, Koga K, Ohshima C, Yamamoto K, Nagashima U, Nagami K (1988) Molecular association in ethanol-water mixtures studied by mass spectrometric analysis of clusters generated through adiabatic expansion of liquid jets. J Am Chem Soc 110:5246–5255CrossRefGoogle Scholar
  46. 46.
    Matsumoto M, Nishi N, Takamuku T, Yamaguchi T, Saita M (1995) Structure of clusters in ethanol-water binary solutions studied by mass spectrometry and X-ray diffraction. Bull Chem Soc Jpn 68(7):1775–1783xCrossRefGoogle Scholar
  47. 47.
    Nishi N (1990) Aqueous molecular clusters isolated as liquid fragments by adiabatic expansion of liquid jets. Z Phys D-Atoms Mol Clusters 15:239–255CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1998

Authors and Affiliations

  • Nobuyuki Nishi

There are no affiliations available

Personalised recommendations