Optical Properties

  • Yoshinori Tokura
  • Kazuhiko Seki


The optical and photoelectronic properties of molecular systems essentially reflect the individual electronic states of constituent molecules. Nevertheless, some important modifications show up occasionally in optical and photoelectron spectra of molecular solids due to intermolecular interaction or the delocalization effect of electrons extended over molecular units. In the ordinary optical spectra, the Coulombic effect, or the final-state interaction, is important in the optical excitation process because of the localized or low-dimensional nature of electronic structures. This Coulombic effect results in the dominant role of the excitons, as explained in the following sections. Photoelectron spectroscopy, however, gives one-particle spectra which contain a lot of information about the π - or σ-valence electrons extending over the molecular units. In some cases, spectral variation reveals important information about the local configuration of molecular units which would otherwise be difficult to establish.


High Occupied Molecular Orbital Polarization Energy Molecular Solid NEXAFS Spectrum Molecular Excitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Philpott MR, Turlet JM (1976) Surface, subsurface, and bulk exciton transitions of crystalline anthracene. J Chem Phys 64:3852–3869CrossRefGoogle Scholar
  2. 2.
    Rashba EI (1966) Theory of vibronic spectra of molecular crystals. Sov Phys JETP 23:708–718Google Scholar
  3. 3.
    Broude VL, Rashba EI, Sheka EF (1967) A new approach to the vibronic spectra of molecular crystals. Phys Status Solidi 19:395–406CrossRefGoogle Scholar
  4. 4.
    Tokura Y, Koda T, Iyechika Y, Kuroda H (1983) Electro-reflectance spectra of charge-transfer excitations in copper phthalocyanine single crystals. Chem Phys Lett 102:174–177CrossRefGoogle Scholar
  5. 5.
    Brillante A, Philpott MR (1980) Reflection and absorption spectra of singlet charge transfer excitions in anthracene-PMDA crystals. J Chem Phys 72:4019–4030CrossRefGoogle Scholar
  6. 6.
    Haarer D, Philpot MR, Morawitz H (1975) Field-induced charge-transfer exciton transitions. J Chem Phys 63:5238–5245CrossRefGoogle Scholar
  7. 7.
    Tokura Y, Koda T (1981) Experimental determination of the charge-transfer exciton bandwidth in anthracene-PMDA crystals. Solid State Commun 40:299–302CrossRefGoogle Scholar
  8. 8.
    Kuwata-Gonogami M, Peyghambarian N, Meissner K, Fluegel B, Sato Y, Ema K, Shimano R, Mazumdar S, Guo F, Tokihiro T, Ezaki H, Hanamura E (1994) Exciton strings in an organic charge-transfer crystal. Nature 367:47–48CrossRefGoogle Scholar
  9. 9.
    Ueta M, Kanzaki H, Kobayashi K, Toyozawa Y, Hanamura E (1984) Excitonic process in solids. Springer, Berlin Heidelberg New York TokyoGoogle Scholar
  10. 10.
    Torrnace JB, Bazquez JE, Meyerle JJ, Lee VY (1981) Discovery of a neutral-to-ionic phase transition in organic materials. Phys Rev Lett 46:253–256CrossRefGoogle Scholar
  11. 11.
    Torrance JB, Girlando A, Meyerle JJ, Crowley JI, Lee VY, Batail P (1981) Anomalous nature of neutral-to-ionic phase transition in tetrathiafulvalene-chloranil. Phys Rev Lett 47:1747–1750CrossRefGoogle Scholar
  12. 12.
    Tokura Y, Koda T, Mitani T, Saito G (1982) Neutral-to-ionic transition in tetrathiafulvalene-p-chloranil as investigated by optical reflection spectra. Solid State Commun 43:757–760CrossRefGoogle Scholar
  13. 13.
    Tokura Y, Okamoto H, Koda T, Mitani T, Saito G (1986) Pressure-induced neutral-to-ionic phase transition in TTF-p-chloranil studied by infrared vibrational spectroscopy. Solid State Commun 57:607–610CrossRefGoogle Scholar
  14. 14.
    Toyozawa Y (1992) Condensation of relaxed excitons in static and dynamic phase transitions. Solid State Commun 84:255–257CrossRefGoogle Scholar
  15. 15.
    Koshihara S, Tokura Y, Mitani T, Saito G, Koda T (1990) Photo-induced valence instability in organic molecular compound tetrathiafulvalene (TTF)-chloranil. Phys Rev B 42:6853–6856Google Scholar
  16. 16.
    Koshihara S, Tokura Y, Takeda K, Koda T (1992) Reversibly photo-induced phase-transition in alkyl-urethane substituted polydiacetylene. Phys Rev Lett 68:1148–1151CrossRefGoogle Scholar
  17. 17.
    Cardona M, Ley L (eds) (1978) Photoemission in solids vol 1 and 2. Springer, Berlin Heidelberg New YorkGoogle Scholar
  18. 18.
    Roy D, Carette JD (1977) Design of electron spectrometers for surface analysis. In: Ibach H (ed) Electron spectroscopy for surface analysis. Springer, Berlin Heidelberg New YorkGoogle Scholar
  19. 19.
    Seki K (1989) Ionization energies of free molecules and molecular solids. Mol Cryst Liq Cryst 171:255–270Google Scholar
  20. 20.
    Sato N, Seki K, Inokuchi H (1977) Polarization energies of organic solids determined by ultraviolet photoelectron spectroscopy. J Chem Soc Faraday Trans II 77:1621–1633CrossRefGoogle Scholar
  21. 21.
    Salaneck WR (1981) Intermolecular relaxation effects in the ultraviolet photoelectron spectroscopy of molecular solids. In: Dwight DW, Fabish TJ, Thomas HR (eds) Photon, electron, and ion probes of polymer structure and properties. ACS, Washington, DC, pp 121–149CrossRefGoogle Scholar
  22. 22.
    Wright JD (1987) Molecular crystals. Cambridge University Press, CambridgeGoogle Scholar
  23. 23.
    Seki K (1989) Photoelectron spectroscopy of polymers. In: Bässler H (ed) Optical techniques to characterize polymer systems. Elsevier, Amsterdam, pp 115–180Google Scholar
  24. 24.
    Hasegawa S, Mori T, Imaeda K, Tanaka S, Yamashita Y, Inokuchi H, Fujimoto H, Seki K, Ueno N (1994) Intermolecular energy-band dispersion in oriented thin films of bis(l,2,5-thiaziazolo-p-quinobis(1,3-dithiole) by angle-resolved photoemission. J Chem Phys 100:6969–6973CrossRefGoogle Scholar
  25. 25.
    Seki K, Yanagi H, Kobayashi Y, Ohta T, Tani T (1994) UV photoemission study of dye/AgBr interfaces in relation to spectral sensitization. Phys Rev B 49:2760–2767CrossRefGoogle Scholar
  26. 26.
    Narioka S, Ishii H, Yoshimura D, Sei M, Ouchi Y, Seki K, Hasegawa S, Miyazaki T, Harima Y, Yamashita K (1995) The electronic structure and energy level alignment of porphyrin/metal interfaces studied by UV photoelectron spectroscopy. Appl Phys Lett 67:1899–1901CrossRefGoogle Scholar
  27. 27.
    Stöhr J (1992) NEXAFS spectroscopy. Springer, Berlin Heidelberg New YorkGoogle Scholar
  28. 28.
    Hitchcock A (1990) Core excitation and ionization of molecules. Phys Scr T31:159–170CrossRefGoogle Scholar
  29. 29.
    Nagayama K, Mitsumoto R, Araki T, Ouchi Y, Seki K (1995) Polarized XANES studies on the mechanical rubbing effect of fluorinated polyethylene and its model compounds. Phys B 208/209:407–408CrossRefGoogle Scholar
  30. 29a.
    Phys B 208/209:419–420 (1995)Google Scholar
  31. 30.
    Narioka S, Ishii H, Ouchi Y, Yokoyama T, Ohta T, Seki K (1995) The electronic structure and energy level alignment of porphyrin-metal interfaces studied by UV photoelectron spectroscopy. J Phys Chem 99:1332–1337CrossRefGoogle Scholar
  32. 31.
    Horseley JA, Stöhr J, Hitchcock AP, Newbury DC, Johnson AL, Sette F (1985) Resonances in the K-shell excitation spectra of benzene and pyridine: gas phase, solid, and chemisorbed states. J Chem Phys 83:6099–6107CrossRefGoogle Scholar
  33. 32.
    Araki T, Seki K, Narioka S, Takata Y, Yokoyama T, Ohta T, Watanabe S, Tani T (1992) XANES spectroscopic studies of merocyanine dyes and their adsorbed states on AgCl. Jpn J Appl Phys 32:434–436Google Scholar
  34. 33.
    Seki K, Mitsumoto R, Araki T, Ito E, Ouchi Y, Kikuchi K, Achiba Y (1994) X-ray absorption near-edge structure (XANES) spectroscopy of fullerenes: inner-shell excitonic effects in fullerenes and the XANES spectrum of a higher fullerene C76. Syn Metals 64:353–357CrossRefGoogle Scholar
  35. 34.
    Tourillon G, Fontaine A, Jugnet Y, Duc TM, Braun W, Feldhaus J, Holub-Krappe E (1987) Evolution upon doping of the σ* and π* bands of poly-(3-methylthiophene) grafted on Pt electrodes as studied by near-edge X-ray-absorption fine-structure spectroscopy. Phys Rev B 36:3483–3486CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1998

Authors and Affiliations

  • Yoshinori Tokura
  • Kazuhiko Seki

There are no affiliations available

Personalised recommendations