Electric and Magnetic Properties

  • Yusei Maruyama


A molecule is the most elementary unit of a substance which still retains the intrinsic nature or function of that substance. Molecules are composed of atoms, but the nature of a molecule is usually very different from that of the component atoms. On the other hand, the nature or function of a molecular solid is primarily determined by its constituent molecules in the zero-order approximation. The structure and properties of molecules in a condensed state are usually very similar to those in the isolated state. The differences between the two states are sometimes very small but are sometimes significantly large. The degree of these differences depends on the interactions between the molecules in the condensed phase. The main intermolecular interaction is usually of the van der Waals’ type, which is much weaker than valence bond or ionic interactions. A weak interaction between molecules leads to a large separation between molecules, and as a consequence electrons are usually localized inside a molecule even in the condensed phase.


Prussian Blue Organic Semiconductor Charge Density Wave Metallic State Molecular Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akamatu H, Inokuchi H (1950) On the electrical conductivity of violanthrone, isoviolanthrone, and pyranthrone. J Chem Phys 18:810–811CrossRefGoogle Scholar
  2. 2.
    Eley DD (1948) Phthalocyanines as semiconductors. Nature 162:819CrossRefGoogle Scholar
  3. 3.
    Akamatu H, Inokuchi H, Matsunaga Y (1954) Electrical conductivity of the perlene-bromine complex. Nature 173:168–169CrossRefGoogle Scholar
  4. 4.
    Coleman LB, Cohen MJ, Sandman DJ, Yamagishi FF, Garito AF, Heeger AJ (1973) Superconducting fluctuations and the Peierls instability in an organic solid. Solid State Commun 12:1125–1132CrossRefGoogle Scholar
  5. 5.
    Saito G, Enoki T, Inokuchi H (1982) A novel behavior of electrical resistivity in a new two-dimensional organic metal, (BEDT-TTF)2CIO4 (1,1,2-trichloroethane)0.5. Chem Lett 1345–1348Google Scholar
  6. 6.
    Inokuchi H, Sano M, Maruyama Y, Sato N (1989) Proceedings of the OJI international seminar on organic semiconductors—40 years. Mol Cryst Liq Cryst 171:1–356Google Scholar
  7. 7.
    Yamashita Y, Tanaka S, Imaeda K, Inokuchi H (1991) Tetrathio-derivatives of p-quinodimethanes fused with 1,2,5-thiadiazoles. A novel type of organic semiconductor. Chem Lett 1213–1216Google Scholar
  8. 8.
    Imaeda K, Yamashita Y, Li Y, Mori T, Inokuchi H, Sano M (1992) Hall-effect observation in the new organic semiconductor bis(1,2,5-thiadiazolo)-p-quinobis(1,3-dithiole) (BTQBT). J Mater Chem 2:115–118CrossRefGoogle Scholar
  9. 9.
    Tomic S, Jerome D, Aumuller A, Erk P, Hunig S, von Schultz JU (1988) Pressure-temperature phase diagram of the organic conductor (DM-DCNQI)2Cu. Synth Met 27:B281–B288CrossRefGoogle Scholar
  10. 10.
    Fukuyama H (1993) The origin of reentrant metallic state in (DCNQI)2Cu. J Phys Soc Jpn 62:1436–1438CrossRefGoogle Scholar
  11. 11.
    Jerome D, Mazaud A, Ribault M, Bechgaard K (1980) Superconductivity in a synthetic organic conductor (TMTSF)2PF6. J Phys Lett 41:L95–L98CrossRefGoogle Scholar
  12. 12.
    Kroto HW, Heath JR, O’Brien SC, Curl RF, Smally RE (1985) C60: Buckminsterfullerene. Nature 318:162–163CrossRefGoogle Scholar
  13. 13.
    Kratschmer W, Lamb LD, Foctiropoulos K, Huffman DR (1990) Solid C60: a new form of carbon. Nature 347–358Google Scholar
  14. 14.
    Hebard AF, Rosseinsky MJ, Haddon RC, Murphy DW, Glarum SH, Palstra TTM, Ramirez AP, Kortan AR (1991) Superconductivity at 18K in potassium-doped C6o. Nature 350:600–601CrossRefGoogle Scholar
  15. 15.
    Frankevich E, Maruyama Y, Ogata H (1993) Mobility of charge carriers in vapor-phase grown C60 single crystal. Chem Phys Lett 214:39–44CrossRefGoogle Scholar
  16. 16.
    Arai T (1994) Electrical transport properties of single crystal C60. Doctoral thesis, Tokyo UniversityGoogle Scholar
  17. 17.
    Ivanov V, Maruyama Y (1995) Disorder and phonon windows for superconductivity in doped fullerenes. Physica C 247:147–155Google Scholar
  18. 18.
    Kinoshita M, Turek P, Tamura M, Nozawa K, Shiomi K, Nakazawa Y, Ishikawa M, Takahashi M, Awaga K, Inabe T, Maruyama Y (1991) An organic radical ferromagnet. Chem Lett 1225–1228Google Scholar
  19. 19.
    Wudl F, Thompson JD (1992) Buckminsterfullerene C60 and organic ferromagnetism. J Phys Chem Solids 53:1449–1455CrossRefGoogle Scholar
  20. 20.
    Allemand PM, Khemani KC, Koch A, Wudl F, Holczer K, Donovan S, Gruner G, Thompson JD (1991) Organic molecular soft ferromagnetism in a fullerene C60 Science 253:301–303CrossRefGoogle Scholar
  21. 21.
    Suzuki A, Suzuki T, Whitehead RJ, Maruyama Y (1994) Evidence of spontaneous magnetic order in the C60 complex with tetrakis(dimethylamino)ethylene. Chem Phys Lett 223:517–520CrossRefGoogle Scholar
  22. 22.
    Suzuki A, Suzuki T, Maruyama Y (1995) Magnetic and electrical behaviors of C60 (TDAE) single crystal. Solid State Commun 96:253–257CrossRefGoogle Scholar
  23. 23.
    Blinc R, Mihailovic PCD, Venturini P, Omerzu A, Arcon D, Pokhodnia K (1995) Single crystal ESR of the organic ferromagnet TDAE-C60 In: Kuzmany H, Fink J, Mehring M, Roth S (eds) Physics and chemistry of fullerenes and derivatives. World Scientific, pp 485–488Google Scholar
  24. 24.
    Ferlay S, Mallah T, Ouahes R, Veillet P, Verdaguer M (1995) A room-temperature organometallic magnet based on Prussian blue. Nature 378:701–703CrossRefGoogle Scholar
  25. 25.
    Sugimoto T, Tsujii M, Matsuura H, Hosoito N (1995) Weak ferromagnetism below 12 K in a lithium tetrafluorotetracyanoquinodimethanide salt. Chem Phys Lett 235:183–186CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1998

Authors and Affiliations

  • Yusei Maruyama

There are no affiliations available

Personalised recommendations