Chemical Transformation

  • Tadashi Sugawara


Chemical transformation is the process of converting conveniently available substances into products of high value. It is therefore crucial to control the behavior of any reactive intermediates involved in chemical transformation in order to obtain the desired product in a highly efficienc manner.


Electron Spin Resonance Electron Spin Resonance Spectrum Spin Multiplicity Diazo Compound Phenyl Azide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jones M Jr, Moss RA (eds) (1973–1975) Carbenes. Wiley, New York, 2 volGoogle Scholar
  2. 2.
    Lwowski W (ed.) (1970) Nitrenes. Wiley, New YorkGoogle Scholar
  3. 3.
    Brown RD, Pullin DE, Rice EHN, Rodler M (1985) The infrared spectrum and force field of C3O. J Am Chem Soc 107:7877–7880CrossRefGoogle Scholar
  4. 4.
    Wentrup C (1984) Synthesis of unusual molecules by flash vacuum pyrolysis of heterocyclic compounds. Lect Hetro Chem 7:91–94Google Scholar
  5. 5.
    Suzuki T, Li Q, Khemani KC, Wudl F, Almarson Ö (1991) Systematic inflation of Buckminsterfullerene C60: Synthesis of diphenyl fulleroids C61 to C66. Science 254:1186–1188CrossRefGoogle Scholar
  6. 6.
    Fu GC, Nguyen ST, Grubbs RH (1993) Catalytic ring-closing metathesis of functionalized dienes by a ruthenium carbene complex. J Am Chem Soc 115:9856–9857CrossRefGoogle Scholar
  7. 7.
    Itoh K (1963) Electron spin resonance of an aromatic hydrocarbon in its quintet ground state. Chem Phys Lett 1:235–238CrossRefGoogle Scholar
  8. 8.
    Mataga N (1968) Possible “ferromagnetic states” of some hypothetical hydrocarbons. Theor Chim Acta 10:372–376CrossRefGoogle Scholar
  9. 9.
    Iwamura H (1990) High-spin organic molecules and spin alignment in organic molecular assemblies. Adv Phys Org Chem 26:179–253CrossRefGoogle Scholar
  10. 10.
    Pacansky J (1980) Recent advances in the photodecomposition mechanisms of diazo-oxides. Polym Eng Sci 20:1049–1053CrossRefGoogle Scholar
  11. 11.
    Reiser A, Leyshon LJ, Johnson L (1971) Effect of matrix rigidity on the reactions of aromatic nitrenes in polymers. Trans Faraday Soc 67:2389–2396CrossRefGoogle Scholar
  12. 12.
    Knowles JR (1972) Photogenerated reagents for biological receptor-site labeling. Acc Chem Res 5:155–160CrossRefGoogle Scholar
  13. 13.
    Walker S, Murnick J, Kahne D (1993) Structural characterization of a calicheamicin-DNA complex by NMR. J Am Chem Soc 115:7954–7961CrossRefGoogle Scholar
  14. 14.
    Schaefer HF III (1986) Methylene: A paradigm for computational quantum chemistry. Science 231:1100–1107CrossRefGoogle Scholar
  15. 15.
    Baird NC, Taylor KF (1978) Multiplicity of the ground state and magnitude of the T1-S0 gap in substituted carbenes. J Am Chem Soc 100:1333–1338CrossRefGoogle Scholar
  16. 16.
    Arduengo AJ III, Harlow RL, Kline M (1991) A stable crystalline carbene. J Am Chem Soc 113:361–363CrossRefGoogle Scholar
  17. 17.
    Hutchison CA Jr, Kohler BE (1969) Electron nuclear double resonance in an organic molecule in a triplet ground state. Spin densities and shape of diphenylmethylene molecules in diphenylethylene single crystals. J Chem Phys 51:3327–3335CrossRefGoogle Scholar
  18. 18.
    Wasserman E, Kuck VJ, Yager WA, Hutton RS, Greene FD, Abegg VP, Weinshenker NW (1971) Electron paramagnetic resonance of 9,9′-Dianthrylmethylene. A linear aromatic ground-state triplet methylene. J Am Chem Soc 93:6335–6337CrossRefGoogle Scholar
  19. 19.
    Hrovat DA, Waali EE, Borden WT (1992) Ab initio calculations of the singlet-triplet energy difference in phenylnitrene. J Am Chem Soc 114:8698–8699CrossRefGoogle Scholar
  20. 20.
    McDonald RN, Davidson SJ (1993) Electron photodetachment of the phenylnitrene anion radical: EA, ΔH fo and the singlet-triplet splitting for phenylnitrene. J Am Chem Soc 115:10857–10862CrossRefGoogle Scholar
  21. 21.
    Yamabe S, Minato T, Osamura Y (1980) Theoretical study of photochemical reactions: Electron assignment and the state correlation diagram. Int J Quantum Chem 18:243–250CrossRefGoogle Scholar
  22. 22.
    Peters KS (1994) Time-resolved photoacoustic calorimetry: From carbenes to proteins. Angew Chem Int Ed Engl 33:294–302CrossRefGoogle Scholar
  23. 23.
    Bock H, Dammel R (1987) The pyrolysis of azides in the gas phase. Angew Chem Int Ed Engl 26:504–526CrossRefGoogle Scholar
  24. 24.
    Bethell D, Stevens G, Tickle P (1970) The reaction of diphenylmethylene with isopro-pyl alcohol and oxygen: The question of reversibility of singlet-triplet interconversion of carbenes. J Chem Soc Chem Commun 792–794Google Scholar
  25. 25.
    Sugawara T, Iwamura H, Hayashi H, Sekiguchi A, Ando W, Liu MTH (1983) Time-resolved absorption spectroscopic detection of 10,10′-dimethyl-10-silaanthracen-9(10H)-one oxide. Chem Lett 1261–1262Google Scholar
  26. 26.
    Casal HL, Sugamori SE, Sciano JC (1984) Study of carbonyl oxide formation in the reaction of singlet oxygen with diphenyldiazomethane. J Am Chem Soc 106:7623–7624CrossRefGoogle Scholar
  27. 27.
    Moss RA (1980) Carbenic selectivity in cyclopropanation reaction. Acc Chem Res 13:58–64CrossRefGoogle Scholar
  28. 28.
    Nickon A (1993) New perspectives on carbene rearrangements: Migratory aptitudes, bystander assistance, and geminal efficiency. Acc Chem Res 26:84–89CrossRefGoogle Scholar
  29. 29.
    Closs GL, Rabinow BE (1976) Kinetic studies on diarylcarbenes. J Am Chem Soc 98:8190–8198CrossRefGoogle Scholar
  30. 30.
    Eisenthal KB, Turro NJ, Aikawa M, Butcher JA Jr, Du Puy C, Hefferson G, Hetherington W, Korenowski GM, McAuliffe MJ (1980) Dynamics and energetics of the singlet-triplet interconversion of diphenylcarbene. J Am Chem Soc 102:6563–6565CrossRefGoogle Scholar
  31. 31.
    Griller D, Nazran AS, Sciano JC (1984) Reaction of diphenylcarbene with methanol. J Am Chem Soc 106:198–202CrossRefGoogle Scholar
  32. 32.
    Tomioka H, Okada H, Watanabe T, Hirai K (1994) An extremely long-lived triplet carbene: Reactivity, optical absorption spectrum, and kinetics of highly congested diarylcarbenes. Angew Chem Int Ed Engl 33:873–875CrossRefGoogle Scholar
  33. 33.
    Schrock AK, Shuster GB (1984) Photochemistry of phenyl azide: chemical properties of the transient intermediates. J Am Chem Soc 106:5228–5234CrossRefGoogle Scholar
  34. 34.
    Ishiguro K, Sawaki Y, Izuoka A, Sugawara T, Iwamura H (1987) ESR study on the σ- and π-radical cations formed by one-electron oxidation of phenyldiazomethanes. J Am Chem Soc 109:2530–2531CrossRefGoogle Scholar
  35. 35.
    Bethell D, Parker VD (1982) Intermediates in the decomposition of aliphatic diazo-compounds. Part 17. Formation and reaction of diazodiphenylmethane anion radical in solution. J Chem Soc Perkin Trans II 841–849Google Scholar
  36. 36.
    Galen DAV, Young MP, Hawley MD, McDonald RN (1985) Kinetic evidence for the formation of the carbene anion radical (EtO2C)2C. J Am Chem Soc 107:1465–1470CrossRefGoogle Scholar
  37. 37.
    Travers MJ, Cowles DC, Clifford EP, Ellison GB (1992) Photoelectron spectroscopy of the phenylnitrene anion. J Am Chem Soc 114:8699–8701CrossRefGoogle Scholar
  38. 38.
    Chapman OL (1979) Photochemistry of diazocompounds and azides in argon. Pure Appl Chem 51:331–339CrossRefGoogle Scholar
  39. 39.
    McMahon R, Abelt CJ, Chapman OL, Johnson JW, Kreil CL, LeRoux JP, Mooring AM, West PR (1987) 1,2,4,6-cycloheptatetraene: The key intermediate in arylcarbene interconversions and related C7H6 rearrangements. J Am Chem Soc 109:2456–2469CrossRefGoogle Scholar
  40. 40.
    LeBlanc BF, Sheridan RS (1988) Observation and substituent control of medium-dependent hot-molecule reactions in low-temperature matrices. J Am Chem Soc 110:7250–7252CrossRefGoogle Scholar
  41. 41.
    Mahé L, Izuoka A, Sugawara T (1992) How a crystalline environment can provide outstanding stability and chemistry for arylnitrenes. J Am Chem Soc 114:7904–7906CrossRefGoogle Scholar
  42. 42.
    McBride JM (1983) The role of local stress in solid-state radical reactions. Acc Chem Res 16:304–312CrossRefGoogle Scholar
  43. 43.
    Itoh K, Konishi H, Mataga N (1968) Optical absorption and luminescence spectra of a ground-state quintet hydrocarbon molecule. J Chem Phys 48:4789–4790CrossRefGoogle Scholar
  44. 44.
    Sugawara T, Tukada H, Izuoka A, Murata S, Iwamura H (1986) Magnetic interaction among diphenylmethylene molecules generated in crystals of some diazodiphenyl-methanes. J Am Chem Soc 108:4272–4278CrossRefGoogle Scholar
  45. 45.
    Wasserman E, Murray RW, Yager WA, Trozzolo AM, Smolinsky G (1967) Quintet ground state of m-dicarbene and m-dinitrene compounds. J Am Chem Soc 89:5076–5078CrossRefGoogle Scholar
  46. 46.
    Nakamura N, Inoue K, Iwamura H (1992) Synthesis and characterization of a branched-chain hexacarbene in a tridecet ground state. An approach to superparamagnetic polycarbenes. J Am Chem Soc 114:1484–1485CrossRefGoogle Scholar
  47. 47.
    Sugawara T, Bandow S, Kimura K, Iwamura H, Itoh K (1986) Magnetic behavior of nonet tetracarbene as a model for one-dimensional organic ferromagnets. J Am Chem Soc 108:368–371CrossRefGoogle Scholar
  48. 48.
    Teki Y, Takui T, Itoh K, Iwamura H, Kobayashi K (1986) Preparation and ESR detection of a ground-state nonet hydrocarbon as a model for one-dimensional organic ferromagnets. J Am Chem Soc 108:2147–2156CrossRefGoogle Scholar
  49. 49.
    Izuoka A, Murata S, Sugawara T, Iwamura H (1987) Molecular design and model experiments of ferromagnetic intermolecular interaction in the assembly of high-spin organic molecules. J Am Chem Soc 109:2631–2639CrossRefGoogle Scholar
  50. 50.
    Sugawara T, Murata S, Kimura K, Iwamura H, Sugawara Y, Iwasaki H (1985) Design of molecular assembly of diphenylcarbenes having ferromagnetic intermolecular interaction. J Am Chem Soc 107:5293–5294CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1998

Authors and Affiliations

  • Tadashi Sugawara

There are no affiliations available

Personalised recommendations