Skip to main content

Improved blood compatibility of heparin immobilization and PEO-PDMS-heparin triblock copolymer coating on surfaces of segmented polyurethaneurea

  • Chapter
Artificial Heart 2

Summary

New heparin-immobilized polyurethaneurea surfaces utilizing hydrophilic spacer systems have been developed for in situ surface modification. Surface modification both by hydrophilic grafting of polyethylene oxide (PEO) and PEO-heparin as well as by heparinized amphiphilic block copolymer coatings significantly improves the nonthrombogenicity of the polyurethaneurea surface without changing the bulk mechanical properties. Heparin immobilization by grafting and coating provides levels of bioactivity that are successful in suppressing contact activation of the intrinsic cascade as well as inhibiting platelet adhesion in vitro. Ex vivo evaluation of these systems in whole blood shunts under conditions of low flow rate and low shear show an impressive ability of immobilized heparin to prolong shunt patency over control materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ebert CD, Kim SW (1982) Immobilized heparin: spacer arm effects on biological interactions. Thromb Res 26: 43–57

    Article  PubMed  CAS  Google Scholar 

  2. Heyman PW, Cho CS, McRea JC, Olsen DB, Kim SW (1985) Heparinized polyurethanes: in vitro and in vivo studies. J Biomed Mat Res 19: 419–436

    Article  CAS  Google Scholar 

  3. Brace LD, Fareed J (1985) An objective assessment of the interactions of heparin and its fractions on human platelets. Sem Thromb Haemostas 11: 190–198

    Article  CAS  Google Scholar 

  4. Mori Y, Nagaoka S (1982) A new antithrombogenic material with long polyethylene oxide chains. Trans Am Soc Art Int Org 28: 459–463

    CAS  Google Scholar 

  5. Merrill EW, Salzman EW (1983) Polyethylene oxide as a biomaterial. ASAIO J 6: 80–84

    Google Scholar 

  6. Okano T, Nishiyama S, Shinohara I, Akaike T, Sakurai Y, Kataoka K, Tsuruta T (1981) Effect of hydrophilic and hydrophobic microdomains on mode of interaction between block polymer and blood platelets. J Biomed Mat Res 15: 383–402

    Article  Google Scholar 

  7. Okano T, Shimada M, Aoyagi T, Shinohara I, Kataoka K, Abe K, Sakurai Y (1986) The hydrophilic-hydrophobic microdomain surface having the ability to suppress platelet aggregation and their in vitro antithrombogenicity. J Biomed Mat Res 20: 919–927

    Article  CAS  Google Scholar 

  8. Okano T, Kataoka K, Abe K, Sakurai Y, Shimada M, Shinohara I (1983) In vivo evaluation of antithrombogenicity of block copolymers with hydrophilic and hydrophobic microdomains by arteriovenous shunts. Prog Org 2: 863–866

    Google Scholar 

  9. Park KD, Okano T, Nojiri C, Kim SW, Heparin immobilization on polyurethane surfaces-effect of hydrophilic spacers. J Biomed Mat Res (in press)

    Google Scholar 

  10. Smith PK, Mallia AK, Harmanson GT (1980) Colormetric method for the assay of heparin content in immobilized heparin preparations. Anal Biochem 109: 466–473

    Article  PubMed  CAS  Google Scholar 

  11. Grainger D, Kim SW, Feijen J (1988) Poly(dimethylsiloxane)-poly(ethylene oxide)-heparin block copolymers: I. Synthesis and characterization. J Biomed Mat Res 22: 231

    Article  CAS  Google Scholar 

  12. Sirridge MS, Shannon R (1983) Evaluation of thrombin formation. Laboratory evaluation of hemostasis and thrombosis, 3rd edn. Lea and Febiger, p 161

    Google Scholar 

  13. Weathersby PK, Kolobow T, Stool E (1975) Relative thrombogenicity of polydimethylsiloxane and silicone rubber constituents. J Biomed Mat Res 9: 561–568

    Article  CAS  Google Scholar 

  14. Zapol WM, Bloom S, Carvalho A, Wonders T, Skoskiewicz M, Schneider R, Snider M (1975) Improved platelet economy using filler-free silicone rubber in long-term membrane lung perfusion. Trans ASAIO 21: 587–591

    CAS  Google Scholar 

  15. Yates WG, Schaap RN, Baumann GC (1978) Effects of filler-free silicone rubber on platelets during bovine extracorporeal membrane oxygenation. Trans Am Art Int Org 24: 644–648

    CAS  Google Scholar 

  16. Nyilas E, Kupski EL (1970) Surface microstructural factors and blood compatibility of silicone rubber. J Biomed Mat Res 4: 369–432

    Article  CAS  Google Scholar 

  17. Nojiri C, Okano T, Grainger D, Park KD, Nakahama S, Suzuki K, Kim SW (1987) Evaluation of nonthrombogenic polymers in a new rabbit A-A shunt model. Trans Am Soc Artif Int Org 33: 602

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Japan

About this chapter

Cite this chapter

Okano, T., Grainger, D., Park, K.D., Nojiri, C., Feijen, J., Kim, S.W. (1988). Improved blood compatibility of heparin immobilization and PEO-PDMS-heparin triblock copolymer coating on surfaces of segmented polyurethaneurea. In: Akutsu, T., et al. Artificial Heart 2. Springer, Tokyo. https://doi.org/10.1007/978-4-431-65964-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-65964-8_6

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-70544-4

  • Online ISBN: 978-4-431-65964-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics