Advertisement

Variation, Adaptation and Developmental Constraints in the Mimetic Butterfly Papilio dardanus

  • Alexandra Cieslak
  • Richard I. Vane-Wright
  • Alfried P. Vogler

Summary

Wing patterns in mimetic butterflies can diversify rapidly to match a chemically defended model, and polymorphic species as the African Mocker Swallowtail, Papilio dardanus, even may mimic several different models. Evolutionary geneticists have ascribed the accurate control of complex differences in wing patterns to the action of ‘supergenes’, i.e. tightly linked multiple genes each specifying particular elements of the wing pattern. However, this concept appears less plausible in the light of modern developmental biology. Instead, we propose that Turing type mechanisms of morphogen gradients may account for a co-ordinate system that while largely buffered from variation, can be modified to produce new or alternate phenotypes by changing a small set of parameters during wing development. The sequential specification of cells in the developing wing allows for the repeated intervention of regulatory components to affect the phenotype, producing complex variation even if genetic differences are small.

Keywords

Colour Pattern Pattern Element Hind Wing Wing Shape Wing Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arthur, W. (2000). The concept of developmental reprogramming and the quest an inclusive theory of evolutionary mechanisms. Evol,. Dev., 2: 49–57.Google Scholar
  2. 2.
    Beldade, P. and P.M Brakefield (2002). The genetics and evo-devo of butterfly g patterns. Nat. Rev. Genet., 3: 442–452.Google Scholar
  3. 3.
    Brakefield, P.M. (1998). The evolution-development interface and advances with the eyespot patterns of Bicyclus butterflies. Heredity, 80: 265–272.CrossRefGoogle Scholar
  4. 4.
    Carroll, S.B., Gates, J., Keys, D.N., Paddock, S.W., Panganiban, G.E.F., Selegue, J.E. and Williams, J.A. (1994). Pattern formation and eyespot determination’ in butterfly wings. Science, 265: 109–114.CrossRefGoogle Scholar
  5. 5.
    Carroll; S,B., ‘Grenier, J.K. and Weatherbee, S.D. (2002). From DN4 to Diversity: Molecular Genetics and the Evolution of Animal Design. Blackwells, Oxford.Google Scholar
  6. 6.
    Charlesworth, D. and!Charlesworth, B. (1976). Theoretical genetics of Batesia mimicry. III. Evolution of dominance. Theor. Biot, 55: 325–327Google Scholar
  7. 7.
    Clarke, C.A., Clarke, F.M.M., Collins, S.C., Gill, A.C.L. and Turner, J.R.G. (1985). Male-like females, mimicry and transvestism in swallowtail butterflies, Syst. Entomol., 10:257–283:CrossRefGoogle Scholar
  8. 8.
    Clarke, C.A. and Sheppard, P.M. (1959). The genetics of Papilla dart/anus, Brown. I. Race cenea from South Africa. Genetics, 44: 1347–1358.Google Scholar
  9. 9.
    Clarke, C.A. and Sheppard, P.M. (1963). Interactions between major genes and polygenes in the determination of the mimetic patterns of Pap ilia dardanus. Evolution, 17: 404–413CrossRefGoogle Scholar
  10. 10.
    Clarke, C.A. and Sheppard, P.M. (1971). Further studies on the genetics mimetic butterfly Papilla rn. emnon. Phil: Trans. Roy. Soc. B, 263: 35–70.CrossRefGoogle Scholar
  11. 11.
    Fisher, RA. (1930). The Genetical Theory of Natural Selection. Clarendo ford, UK.MATHGoogle Scholar
  12. 12.
    Ford; E.B. (1936). The genetics of Papil o dardanus Brow Eniomol, Soc. Lond., 85: 435–466.Google Scholar
  13. 13.
    French, V. (1997). Pattern formation in colour on butterfly wings. Cur. Opin. Gen. Develop., 7:524–529CrossRefGoogle Scholar
  14. 14.
    Gerhart, J. and Kirschner, M. (1997). Cells, Embryos, and Evolution. Blackwell, Malden, MA.Google Scholar
  15. 15.
    Koch, P.B., Keys, D.N., Rocneleau, T., Aronstein, K., Blackburn, M., Carroll, S.B. and Drench-Constant, R.H. (1998). Regulation of Dopa Decarboxylase expression during colour pattern formation in wild-typ and melanic Tiger Swallowtail Butterflies. Development, 125: 2303–2313.Google Scholar
  16. 16.
    Koch, P.B., Lorenz, Ti., Brakefield, P.M. and Dfrench-Constant, P.H. (2000). Butterfly wing pattern mutants: developmental heterochrony and co-ordinately regulated phenotypes. Devel. Genes Evol. 210: 536–544.CrossRefGoogle Scholar
  17. 17.
    Madzvamuse, A., Thomas, R.D.K., Sekimura, T., Wathen, A.J. and Maini, P.K. (2003). The moving grid finite element method applied to biological problems in T. Sekimura, S. Noji, N. Jeno, and P. K. Maim, eds. Morphogenesis and Pattern Formation in Biological Systems. Springer Verlag, Tokyo.Google Scholar
  18. McMillan, O.W., Monteiro, A. and Kapan, D.D. (2002). Development and evolution on the wing. Trends Ecol. Evol. 17:125–133.CrossRefGoogle Scholar
  19. 19.
    Murray, J. (1972). Genetic Diversity and Natural Selection. Oliver and Boyd, Edinburgh.Google Scholar
  20. 20.
    Murray, J.D. (1981). On pattern formation mechanisms for lepidopteran wing patterns and mammalian coat markings. Phil. Trans. Roy. Soc. Land. B, 295: 473–496.CrossRefGoogle Scholar
  21. 21.
    Nijhout, H.F. (1991). The Development and Evolution of Butterfly terns. Smithsonian Institution Press, Washington.Google Scholar
  22. 22.
    Nijhout, H.F. (1994). Developmental perspectives on evolution of butterflies. BioScience, 8: 148–157.Google Scholar
  23. 23.
    Nijhout, H.F. (1994). Symmetry systems and compartments in Lepidoptera wings: the evolution of a patterning mechanism. Development Supp:225–233Google Scholar
  24. 24.
    Nijhout, H.F. (1999). When developmental pathways diverge. Proc. Natl. Acad. Sci., 96: 5348–5350.CrossRefGoogle Scholar
  25. 25.
    O’Donald, P. and Barrett, J.A. (1973). Evolution of dominance in polymorphic Batesian mimicry. Theoret. Pop. Biol., 4: 173–192.CrossRefGoogle Scholar
  26. 26.
    Robinson, R. (1971). Lepidoptera Genetics. Pergamon, Oxford.Google Scholar
  27. 27.
    Schwanwitsch, B.N. (1924). On the ground plan of wing-pattern in nyrnphalids and certain other families of rhopalocerous Lepidoptera. Proc. Zool. Soc. Lond., 1924: 509–528.Google Scholar
  28. 28.
    Sekimura, T., Madzvamuse, A., Wathen, A.J. and Maini, P.K. (2000). A model for colour pattern formation in the butterfly wing of Papilio dardanus. Proc. Roy. Soc. Load. B, 267: 851–859.CrossRefGoogle Scholar
  29. 29.
    Sheppard, P.M. (1975). Natural Selection and Heredity ( 4th edn ). Hutchinson, London.Google Scholar
  30. 30.
    Turing, A.M. (1952): The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. Lond. B. 237: 37–72.CrossRefGoogle Scholar
  31. 31.
    Turner, J.R.G. (1963). Geographical variation and evolution in the males of the butterfly Papilio dardanus Brown (Lepidoptera: Papiüonidae). Trans R. ent. Soc. Land., 115: 239–259CrossRefGoogle Scholar
  32. 32.
    Turner, J.R.G. (1978). Why male butterflies are non-mimetic: natural selection. group selection, modification and sieving. Biol. J. Linn. Soc., 10: 385–432.CrossRefGoogle Scholar
  33. 33.
    Turner, J.R.G. (1984). Mimicry: the palatability spectrum and its consequences. Symp. R. ent. Soc. Lond., 11: 141–161.Google Scholar
  34. 34.
    Vane-Wright, R.I. (1981). Mimicry and its unknown ecological consequences. pp. 157–168 in P. L. Forey, Eds. The Fso rnrzg Biosphere. BMNH/ Carnbridge UP, LondonGoogle Scholar
  35. 35.
    Vane-Wright, R.I. and Boppré, M. (1993). Visual and chemical signalling in butterflies: functional and phvlogenetic perspectives. Phsl. Trans. Roy. Soc. Land. B, 340: 197–205CrossRefGoogle Scholar
  36. 36.
    Waddington, C.H. (1942); The canalisation of development and the inheritance of acquired characters. Nature, 150: 563.CrossRefGoogle Scholar
  37. 37.
    Waddington, C.H. (1957). The Strategy of the Genes. Alien and Unwin, London.Google Scholar

Copyright information

© Springer Japan 2003

Authors and Affiliations

  • Alexandra Cieslak
    • 1
    • 2
  • Richard I. Vane-Wright
    • 1
  • Alfried P. Vogler
    • 1
    • 2
  1. 1.Department of EntomologyThe Natural History MuseumLondonUK
  2. 2.Department of BiologyImperial College at Silwood ParkAscot, BerkshireUK

Personalised recommendations