Advertisement

Changing Roles of Homeotic Gene Functions in Arthropod Limb Development

  • Shigeo Hayashi
  • Hideo Yamagata
  • Yasuhiro Shiga

Summary

The extensive diversification of limb morphologies during arthropod evolution has aided the spread of new species to distant locations and adaptation for distinct niches. Functional evolution of homeotic genes is thought to have played a key role in this diversification process, but the molecular mechanisms underlying this process remain to be elucidated. Insects and crustaceans are close relatives within arthropods and possess a variety of diversities in the shape of their limbs. Comparison of genetic circuitries underlying the formation of insect and crustacean limbs should reveal the genetic history of their morphological evolution. We have recently analyzed the functional role of ANTENNAPEDIA (ANTP) homeotic protein of the crustacean Daphnia magna and compared its properties to its weil studied counterpart, the insect Drosophila melanogaster.Our results suggest that highly restricted expression of ANTP in the first leg of Daphnia specifies its morphology. Furthermore, while the core ANTP function of specifying thoracic identity is conserved, changes in the protein region outside of the homeodomain altered the target gene specificity. Based on these findings, we discuss the role of homeotic gene evolution in diversification of arthropod limb morphology.

Keywords

Homeotic Gene Limb Development Thoracic Limb Homeotic Protein Denticle Belt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abzhanov, A. and Kaufman, T.C. (2000). Crustacean (malacostracan) Hox genes and the evolution of the arthropod trunk. Development, 127: 2239–2249.Google Scholar
  2. 2.
    Abzhanov, A. and Kaufman,T.C. (2000). Embryonic expression patterns of the Hox genes of the crayfish Procambarus clarkii (Crustacea, Decapoda), Evol Dev, 2: 271–283.CrossRefGoogle Scholar
  3. 3.
    Averof, M. and Akam, M. (1995): Hox genes and the divers and crustacean body plans. Nature, 376:420–423.CrossRefGoogle Scholar
  4. 4.
    Averof, M. and Patel, N.H. (1997). Crustacean appendage evolution associated with changes in Hox gene expression. Nature, 388:682–686:CrossRefGoogle Scholar
  5. 5.
    Bermingham, J.R.J. and Scott, M.P. (1988). Developmentally regulated alternative splicing of transcripts from the Drosophila homeotic gene Antennapedia can produce four different proteins. EMBO J., 7: 3211–3222.Google Scholar
  6. 6.
    Brusca, R.C. and Brusca; G.J. (1990). Invertebrates. Sinauer Associates, inc., Sunderland, Massachusetts.Google Scholar
  7. 7.
    Carroll, S., Grenier, J. and Weatherbee, S. (2001). From DNA to Diversity-Molecular Genetics and the Evolution of Animal Design,Blackwell Science Inc.Google Scholar
  8. 8.
    Casares,F. and Mann, R.S., (1998). Control of antenna], versus leg development in Drosophila. Nature, 392:723–726CrossRefGoogle Scholar
  9. 9.
    Fasano, L., Rder,L.,Core N., Alexandre, E., Vola, C., Jacq, B. and Kerridge, S. (1991). The teashirt gene is required for the development of Drosophila embryonic trunk segments and encodes a protein with widely spaced zinc finger motifs. Cell, 64: 63–79.CrossRefGoogle Scholar
  10. 10.
    Galant, R. and Carroll, S.B. (2002), Evolution of a transcriptional repression domain in an insect Hox protein. Nature, 415: 910–3.CrossRefGoogle Scholar
  11. 11.
    Grenier; J.K., Garber, T.L., Warren, R., Whitington, P.M.and Carroll, S. (1997). Evolution of the entire arthropod Hox gene set predated the origin and adiation of the onychophoran/arthropod clade. Curr Biol, 7: 547–553.CrossRefGoogle Scholar
  12. 12.
    Jaffe, L., Ryoo, H.D. and Mann, R.S. (1997). A role for phosphorylation by casein kinase II in modulating Antennapedia activity in Drosophila. Genes Dev, 11: 1327–1340.CrossRefGoogle Scholar
  13. 13.
    Kelsh, R., Weinzierl, R.O., White, R.A. and Akam, M. (1994). Homeotic-gene expression in the locust Schistocerca: an antibody that detects conserved epitopes in Ultrabitlorax and abdominal-A’ proteins. Dey Genet, 15: 19–31.CrossRefGoogle Scholar
  14. 14.
    Krumlauf, R. (1992). Evolution of the vertebrate Hox homeobox genes. Bioes-says, 14: 245–52.CrossRefGoogle Scholar
  15. 15.
    Li, X. and McGinnis, W. (1999). Activity regulation of Hox proteins, a mechanism for altering functional, specificity in development and evolution. Proc atl` Acad Sci U S A, 96: 6802–7.CrossRefGoogle Scholar
  16. 16.
    Malicki, J., Schughart, K., McGinnis, W. (1990). mouse Hox-2.2 specifies tho racic segmental identity in Drosophila embryo and larvae.Cell, 63: 961–967.CrossRefGoogle Scholar
  17. 17.
    Morata, G. (1993). Homeotic genes of Drosophila. Curr Opin Genet Dev, 3: 606–614.CrossRefGoogle Scholar
  18. 18.
    Panganiban, G., Irvine, S.M., Lowe, C., Roehl, H., Corley, L.S.,Sherbon, B., Grenier, J.K., Fallon, J.F., Kimble, J. and Walker, M. (1997). The origin and evolution of animal appendages. Proc Natl Acad Sci U S A, 94: 5162–5166.CrossRefGoogle Scholar
  19. 19.
    Panganiban, G., Sebring, A., Nagy, L. and Carroll. S (1995). The development of crustacean limbs and the evolution of arthropods. Science, 270: 1363–1366.CrossRefGoogle Scholar
  20. 20.
    Ronshaugen, M., McGinnis, N. and McGinnis, W. (2002), Hol protein mutation and macroevolution of the insect body plan. Nature, 415:914–7CrossRefGoogle Scholar
  21. 21.
    Schneuwly, S., Klemenz, R. and Gehring, W.J. (1987): Redesigr.ing the body plan of Drosophila by ectopic expression of the hornoeotiç gene Antennapedia. Nature, 325: 816–818.CrossRefGoogle Scholar
  22. 22.
    Shiga, Y., Yasurroto, R., Yamagata, H. and Hayashi, S. (2002). Evolving role of Antennapedia protein in arthropod limb patterning.,DevélöPmemt, 129: 3555–61.Google Scholar
  23. 23.
    Strunl, G. (1981). A homceotic mutation transforming leg to antenna in Drosophila. Nature, 292: 635–8.CrossRefGoogle Scholar
  24. 24.
    Vacnon? G., Cohen, B., Pfeifle, C., McGuffir, M.E., Botas, J. and Cohen, S.M. (1992). Homeotic genes in of the bithorax complex repress lirnb development in the abdomen of the Drosophila embryo through the target gene Distal-less. Cell,71: 437–450.CrossRefGoogle Scholar
  25. 25.
    Warren, R.W.,Nagy, L., Seleguz, J., Gates, J. and Carroll, S. (1994). Evolution of homeotic gene régulation and function in flies and butterflies. Nature, 372: 458–461.CrossRefGoogle Scholar

Copyright information

© Springer Japan 2003

Authors and Affiliations

  • Shigeo Hayashi
    • 1
  • Hideo Yamagata
    • 2
  • Yasuhiro Shiga
    • 2
  1. 1.Morphogenetic Signaling GroupRiken Center for Developmental BiologyChuo-ku,Kobe,HyogoJapan
  2. 2.School of Life ScienceTokyo University of Pharmacy and Life Science 1432-1Horinouchi, Hachioji, TokyoJapan

Personalised recommendations