Skip to main content

Changing Roles of Homeotic Gene Functions in Arthropod Limb Development

  • Chapter
Morphogenesis and Pattern Formation in Biological Systems

Summary

The extensive diversification of limb morphologies during arthropod evolution has aided the spread of new species to distant locations and adaptation for distinct niches. Functional evolution of homeotic genes is thought to have played a key role in this diversification process, but the molecular mechanisms underlying this process remain to be elucidated. Insects and crustaceans are close relatives within arthropods and possess a variety of diversities in the shape of their limbs. Comparison of genetic circuitries underlying the formation of insect and crustacean limbs should reveal the genetic history of their morphological evolution. We have recently analyzed the functional role of ANTENNAPEDIA (ANTP) homeotic protein of the crustacean Daphnia magna and compared its properties to its weil studied counterpart, the insect Drosophila melanogaster.Our results suggest that highly restricted expression of ANTP in the first leg of Daphnia specifies its morphology. Furthermore, while the core ANTP function of specifying thoracic identity is conserved, changes in the protein region outside of the homeodomain altered the target gene specificity. Based on these findings, we discuss the role of homeotic gene evolution in diversification of arthropod limb morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abzhanov, A. and Kaufman, T.C. (2000). Crustacean (malacostracan) Hox genes and the evolution of the arthropod trunk. Development, 127: 2239–2249.

    Google Scholar 

  2. Abzhanov, A. and Kaufman,T.C. (2000). Embryonic expression patterns of the Hox genes of the crayfish Procambarus clarkii (Crustacea, Decapoda), Evol Dev, 2: 271–283.

    Article  Google Scholar 

  3. Averof, M. and Akam, M. (1995): Hox genes and the divers and crustacean body plans. Nature, 376:420–423.

    Article  Google Scholar 

  4. Averof, M. and Patel, N.H. (1997). Crustacean appendage evolution associated with changes in Hox gene expression. Nature, 388:682–686:

    Article  Google Scholar 

  5. Bermingham, J.R.J. and Scott, M.P. (1988). Developmentally regulated alternative splicing of transcripts from the Drosophila homeotic gene Antennapedia can produce four different proteins. EMBO J., 7: 3211–3222.

    Google Scholar 

  6. Brusca, R.C. and Brusca; G.J. (1990). Invertebrates. Sinauer Associates, inc., Sunderland, Massachusetts.

    Google Scholar 

  7. Carroll, S., Grenier, J. and Weatherbee, S. (2001). From DNA to Diversity-Molecular Genetics and the Evolution of Animal Design,Blackwell Science Inc.

    Google Scholar 

  8. Casares,F. and Mann, R.S., (1998). Control of antenna], versus leg development in Drosophila. Nature, 392:723–726

    Article  Google Scholar 

  9. Fasano, L., Rder,L.,Core N., Alexandre, E., Vola, C., Jacq, B. and Kerridge, S. (1991). The teashirt gene is required for the development of Drosophila embryonic trunk segments and encodes a protein with widely spaced zinc finger motifs. Cell, 64: 63–79.

    Article  Google Scholar 

  10. Galant, R. and Carroll, S.B. (2002), Evolution of a transcriptional repression domain in an insect Hox protein. Nature, 415: 910–3.

    Article  Google Scholar 

  11. Grenier; J.K., Garber, T.L., Warren, R., Whitington, P.M.and Carroll, S. (1997). Evolution of the entire arthropod Hox gene set predated the origin and adiation of the onychophoran/arthropod clade. Curr Biol, 7: 547–553.

    Article  Google Scholar 

  12. Jaffe, L., Ryoo, H.D. and Mann, R.S. (1997). A role for phosphorylation by casein kinase II in modulating Antennapedia activity in Drosophila. Genes Dev, 11: 1327–1340.

    Article  Google Scholar 

  13. Kelsh, R., Weinzierl, R.O., White, R.A. and Akam, M. (1994). Homeotic-gene expression in the locust Schistocerca: an antibody that detects conserved epitopes in Ultrabitlorax and abdominal-A’ proteins. Dey Genet, 15: 19–31.

    Article  Google Scholar 

  14. Krumlauf, R. (1992). Evolution of the vertebrate Hox homeobox genes. Bioes-says, 14: 245–52.

    Article  Google Scholar 

  15. Li, X. and McGinnis, W. (1999). Activity regulation of Hox proteins, a mechanism for altering functional, specificity in development and evolution. Proc atl` Acad Sci U S A, 96: 6802–7.

    Article  Google Scholar 

  16. Malicki, J., Schughart, K., McGinnis, W. (1990). mouse Hox-2.2 specifies tho racic segmental identity in Drosophila embryo and larvae.Cell, 63: 961–967.

    Article  Google Scholar 

  17. Morata, G. (1993). Homeotic genes of Drosophila. Curr Opin Genet Dev, 3: 606–614.

    Article  Google Scholar 

  18. Panganiban, G., Irvine, S.M., Lowe, C., Roehl, H., Corley, L.S.,Sherbon, B., Grenier, J.K., Fallon, J.F., Kimble, J. and Walker, M. (1997). The origin and evolution of animal appendages. Proc Natl Acad Sci U S A, 94: 5162–5166.

    Article  Google Scholar 

  19. Panganiban, G., Sebring, A., Nagy, L. and Carroll. S (1995). The development of crustacean limbs and the evolution of arthropods. Science, 270: 1363–1366.

    Article  Google Scholar 

  20. Ronshaugen, M., McGinnis, N. and McGinnis, W. (2002), Hol protein mutation and macroevolution of the insect body plan. Nature, 415:914–7

    Article  Google Scholar 

  21. Schneuwly, S., Klemenz, R. and Gehring, W.J. (1987): Redesigr.ing the body plan of Drosophila by ectopic expression of the hornoeotiç gene Antennapedia. Nature, 325: 816–818.

    Article  Google Scholar 

  22. Shiga, Y., Yasurroto, R., Yamagata, H. and Hayashi, S. (2002). Evolving role of Antennapedia protein in arthropod limb patterning.,DevélöPmemt, 129: 3555–61.

    Google Scholar 

  23. Strunl, G. (1981). A homceotic mutation transforming leg to antenna in Drosophila. Nature, 292: 635–8.

    Article  Google Scholar 

  24. Vacnon? G., Cohen, B., Pfeifle, C., McGuffir, M.E., Botas, J. and Cohen, S.M. (1992). Homeotic genes in of the bithorax complex repress lirnb development in the abdomen of the Drosophila embryo through the target gene Distal-less. Cell,71: 437–450.

    Article  Google Scholar 

  25. Warren, R.W.,Nagy, L., Seleguz, J., Gates, J. and Carroll, S. (1994). Evolution of homeotic gene régulation and function in flies and butterflies. Nature, 372: 458–461.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Japan

About this chapter

Cite this chapter

Hayashi, S., Yamagata, H., Shiga, Y. (2003). Changing Roles of Homeotic Gene Functions in Arthropod Limb Development. In: Sekimura, T., Noji, S., Ueno, N., Maini, P.K. (eds) Morphogenesis and Pattern Formation in Biological Systems. Springer, Tokyo. https://doi.org/10.1007/978-4-431-65958-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-65958-7_7

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-65960-0

  • Online ISBN: 978-4-431-65958-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics