The Moving Grid Finite Element Method Applied to Biological Problems

  • Anotida Madzvamuse
  • Roger D. K. Thomas
  • Toshio Sekimura
  • Andrew J. Wathen
  • Philip K. Maini


This paper presents a novel numerical technique, the moving grid finite element method, to solve generalised Turing [20] reaction-diffusion type models on continuously deforming growing domains. Applications to the development of bivalve ligaments and pigmentation colour patterns in the wing of the butterfly Papilio dardanus will be considered, by way of examples.


Pattern Formation Ground Plan Colour Pattern Butterfly Wing Human Frontier Science Program 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baines, M.J. (1994). Moving Finite Elements. Monographs on Numerical Analysis, Qxford: Clarendon Press.Google Scholar
  2. 2.
    Baines, M.J. and Wathen, A.J. (1988). Moving finite element method for evolutionary problems. I. Theory J. Cornp. Phys.; 79, 245 - 269.MathSciNetMATHGoogle Scholar
  3. 3.
    Crampin, E.J., Gaffney, E.A., and Maini, P.K. (1999). Pattern formation through reaction and diffusion on growing domains: Scenarios for robust pattern formation, Bull. Math. Biol., 61, 1093 - 1120.CrossRefGoogle Scholar
  4. 4.
    Gierer, A. and Meinhardt, H. (1972). A theory of biological pattern formation. Kybernetik., 12, 30 - 39.CrossRefGoogle Scholar
  5. 5.
    Jimack, P.K. and Wathen, A.J. (1991). Temporal derivatives in the finite element method on continuously deforming grids. SIAM J. Numer. Anal., 28, 990 - 1003.MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Kondo, S. and Asai, R. (1995). A reaction-diffusion wave on the skin of the marine anglefish, Pomacanthus. Nature, 376, 765 - 768.CrossRefGoogle Scholar
  7. 7.
    Madzvamuse, A., Thomas, R.D.K., Maini, P.K., and Wathen, A.J. (2002). A numerical approach to the study of spatial pattern formation in the ligaments of arcoid bivalves. Bull. Math. Biol., 64, 501 - 530.CrossRefGoogle Scholar
  8. 8.
    Meinhardt, H. (1995). The Algorithmic Beauty of Sea Shells. Heidelberg, New York, Springer-Verlag.Google Scholar
  9. 9.
    Morton, K.W. and Mayers, D.F. (1994). Numerical Solution of Partial Differential Equations. Cambridge University Press.Google Scholar
  10. 10.
    Murray, J.D. (1993). Mathematical Biology. Springer-Verlag, Berlin, 2nd edition.MATHCrossRefGoogle Scholar
  11. 11.
    Nijhout, H.F. (1991). The Development and Evolution of Butterfly Wing Patterns. Washington, DC. Smithsonian Institution Press.Google Scholar
  12. 12.
    Reddy, T.N. (1984). An Introduction to the Finite Element Method,McGrawHlll.Google Scholar
  13. 13.
    Saad, Y. (1986), Iterative Methods for Sparse Linear Systems. PWS Publishing Co.Google Scholar
  14. 14.
    Schnakenberg, J. (1979). Simple chemical reaction systems with limit cycle behaviour. J. Theor. Biol., 81, 389 - 400.MathSciNetCrossRefGoogle Scholar
  15. 15.
    Schwanwitsch, B.N. (1924). On the ground plan of wing-pattern in the nymphalids and certain other families of rhopalocerous Lepidoptera. Proc. Zoo. Soc. Lond. B, 34, 509 - 528.Google Scholar
  16. 16.
    Sekimura, T., Madzvamuse, A., Wathen, A.J., and Maini, P.K. (2000). A model for colour pattern formation in the butterfly wing of Papilio dardanus. Proc. Roy. Soc. Lond. B, 267, 851 - 859.CrossRefGoogle Scholar
  17. 17.
    Süffert, F. (1927). Zur vergleichende analyse der schmetterlingszeichung. Biol. Zbl., 47, 385 - 413.Google Scholar
  18. 18.
    Thomas, R.D.K., Madzvamuse, A., Maini, P.K., and Wathen, A.J. (2000). Growth patterns of noetiid ligaments: Implications of developmental models for the origin of an evolutionary novelty among arcoid bivalves. The Evol. Biol. of the Biv. Geological Soc. Lond., 177, 279 - 289.CrossRefGoogle Scholar
  19. 19.
    Trueman, E.R. Ligament. In: Moore R.C. (ed.) (1969) Treatise on Invertebrate Paleontology. Geo. Soc. Amer. and Univ. of Kansas. Part N. Mollusca, 6, 58-64.,Google Scholar
  20. 20.
    Turing, A. (1952). The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. 8, 237, 37 - 72.CrossRefGoogle Scholar

Copyright information

© Springer Japan 2003

Authors and Affiliations

  • Anotida Madzvamuse
    • 1
  • Roger D. K. Thomas
    • 2
  • Toshio Sekimura
    • 3
  • Andrew J. Wathen
    • 1
  • Philip K. Maini
    • 4
  1. 1.Oxford University Computing LaboratoryOxfordUK
  2. 2.Department of GeosciencesFranklin & Marshall CollegeLancasterUSA
  3. 3.Department of Biological Chemistry, College of Bioscience and BiotechnologyChubu UniversityKasugai, AichiJapan
  4. 4.Centre for Mathematical BiologyMathematical InstituteOxfordUK

Personalised recommendations