Advertisement

Morphology and Function of Cuticular Terraces in Stomatopoda (Crustacea) and Mantodea (Insecta)

  • Enrico Savazzi

Abstract

Relief patterns consisting of sets of subparallel ridges with a distinctly asymmetrical cross-section have been described in a variety of marine and marine-derived invertebrates (see below). In the literature, these ridges usually are called terraces, terrace-lines or terrace-sculptures [25, 26, 27, 28, 29, 31] because of their superficial similarity with agricultural terraces on sloping terrains. Typically, the cross-section of a terrace is asymmetrically triangular, with a very steep face and a gently sloping opposite face, and a sharp edge (either straight or crenulated) delimiting the distal end of the steep face.

Keywords

Mobile Spine Fixed Spine Constructional Morphology Agricultural Terrace Predatory Strike 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ass. M.J. (1973). Die Fangbeine der Arthropodes, ihre Entstehung, Evolution und Funktion. Deutsche Entomologische Zeitschrift 1-3: 127 - 152.Google Scholar
  2. 2.
    Bremond, J. (1974). Remarques sur le phenomene du convergence des members prehensiles chez la Mante religieuse et le Crustace Squilla mantis. Entomologiste 30: 183: 188.Google Scholar
  3. 3.
    Burrows, M. (1969). The mechanics and neural control of the prey capture strike in the mantid shrimps, Squilla and Hemisquilla. Zeitschrift fur vergleichende Physiologie 62: 361 - 381.CrossRefGoogle Scholar
  4. 4.
    Caldwell, R.L. and Dingle, H. (1975). Stomatopods. Scientific American 234: 81 - 89.Google Scholar
  5. 5.
    Cleal, K.S. and Prete, F.R. (1996). The predatory strike of free ranging praying mantises, Sphodromantis lineola (Burr.) II: Strikes in the horizontal plane. Brain Behaviour and Evolution 48: 191 - 204.CrossRefGoogle Scholar
  6. 6.
    Copeland, J. and Carlson, A.D. (1979). Prey capture in mantids: a non-stereotyped component of lunge. Journal of Insect Physiology 25: 263 - 269.CrossRefGoogle Scholar
  7. 7.
    Corrette, B.J. (1990). Prey capture in the praying mantis Tenodera aridifolia sinensis: coordination of the capture sequence and strike movements. Journal of Experimental Biology 148: 147 - 180.Google Scholar
  8. 8.
    Ehrmann, R. (1992). Vertebrates as food for praying mantids (Mantodea). Entomologische Zeitschrift 102: 153 - 161.Google Scholar
  9. 9.
    Gray, P.T. and Mill, P.J. (1983). The mechanics of the predatory strike of the praying mantis Hierodula membranacea. Journal of Experimental Biology 107: 245 - 275.Google Scholar
  10. 10.
    Hamann, T. and Matsuura, S. (1986). Optimal prey size for the Japanese mantis shrimp from structure of the raptorial claw: Bulletin of the Japanese Society of Scientific Fisheries 52: 1 - 10.CrossRefGoogle Scholar
  11. 11.
    Jacques, F. (1989). Pseudosetal formations of maxillipeds in Stomatopoda. In Ferrero E.A. (ed.): Biology of stomatpopods. Selected Symposia and Monographs U.Z.I. 3: 133 - 139.Google Scholar
  12. 12.
    Jefferies, R.P.S. (1984). Locomotion, shape, ornament and external ontogeny-in some mitrate calcichordates. Journal of Vertebrate Paleontology 4:292-319:Google Scholar
  13. 13.
    Kohn, A.J. (1986). Slip-resistant silver-feet: shell form and mode of life in Lower Pleistocene Argyropeza from Fiji. Journal of Paleontology 60: 1066 - 1074.Google Scholar
  14. 14.
    Lorton, R.G. and Nicholls, I. (1979). The functional morphology of the praying mantis forelimb (Dictyoptera:Mantodea). Zoology of the Linnean Society 66: 185 - 203.CrossRefGoogle Scholar
  15. 15.
    Reitze, M. and Nentwig, W. (1991). Comparative investigations into the feeding ecology of six Mantodea species. Oecologia 86: 568 - 574.CrossRefGoogle Scholar
  16. 16.
    Savazzi, E. (1981). Functional morphology of the cuticular terraces in Ranina (Lophoranina) (brachyuran decapods; Eocene of NE Italy). Neues Jahrbuch fur Geologie und Palaontologie Abhandlungen 162: 231 - 243.Google Scholar
  17. 17.
    Savazzi, E. (1982). Burrowing habits and cuticular sculptures in Recent sand-dwelling brachyuran decapods from the Northern Adriatic Sea (Mediterranean). Neues Jahrbuch fur Geologie und Palaontologie Abhandlungen 163: 369 - 388.Google Scholar
  18. 18.
    Savazzi, E. (1985): Adaptive themes in cardiid bivalves. Neues Jahrbuch fur Geologie und Palaontologie Abhandlungen 170: 291 - 321.Google Scholar
  19. 19.
    Savazzi, E. (1985). Functional morphology of the cuticular terraces in burrowing terrestrial brachyuran decapods. Lethaia 18: 147 - 154.CrossRefGoogle Scholar
  20. 20.
    Savazzi, E. (1986). Burrowing sculptures and life habits in Paleozoic lingulacean brachiopods. Paleobiology 12: 46 - 63.Google Scholar
  21. 21.
    Savazzi, E. (1989). Burrowing mechanisms and sculptures in Recent gastropods. Lethaia 22: 31 - 48.CrossRefGoogle Scholar
  22. 22.
    Savazzi, E. (1991). Burrowing sculptures as an example in functional morphology. Terra Nova 3: 242 - 250.Google Scholar
  23. 23.
    Savazzi, E. (1994). Adaptations to burrowing in a few Recent gastropods. Historical Biology 7: 291 - 311.CrossRefGoogle Scholar
  24. 24.
    Savazzi, E. and Pan, H. (1994). Experiments on the frictional properties of terrace sculptures. Lethaia 27: 325 - 336.CrossRefGoogle Scholar
  25. 25.
    Savazzi, E., Jefferies, R.P.S. and Signor, P.W.III. (1982). Modification of the paradigm for burrowing ribs in various gastropods, crustaceans and calcichordates. Neues Jahrbuch fur Geologie and Palaontologie Abhandlungen 164: 206217.Google Scholar
  26. 26.
    Schmalfuss, H. (1978). Structure, Patterns, and function of cuticular terraces in Recent and fossil arthropods. I. Decapod crustaceans. Zoomorphologie 90: 19 - 40.CrossRefGoogle Scholar
  27. 27.
    Schmalfuss, H. (1978). Constructional morphology of cuticular structures in crustaceans. Neues Jahrbuch fur Geologie and Palaontologie 156: 155 - 159.Google Scholar
  28. 28.
    Schmalfuss, H. (1981). Structure, patterns and function of cuticular terraces in trilobites. Lethaia 14: 331 - 341.CrossRefGoogle Scholar
  29. 29.
    Seilacher, A. (1973). Fabricational noise in adaptive morphology. Systematic Zoology 22: 451 - 465.CrossRefGoogle Scholar
  30. 30.
    Seilacher, A. (1984). Constructional morphology of bivalves: evolutionary pathways in primary versus secondary soft-bottom dwellers. Palaeontology 27: 207237.Google Scholar
  31. 31.
    Seilacher, A. (1985). Trilobite palaeobiology and substrate relationships. Transactions of the Royal Society of Edinburgh 76: 231 - 237.CrossRefGoogle Scholar
  32. 32.
    Signor, P.W.III. (1982). Constructional morphology of gastropod ratchet sculptures. Neues Jahrbuch fur Geologie and Palaontologie Abhandlungen 163: 349 - 368.Google Scholar
  33. 33.
    Signor, P.W.III. (1983). Burrowing and the functional significance of ratchet sculpture in turritelliform gastropods. Malacologin 23: 313 - 320.Google Scholar
  34. 34.
    Stanley, S.M. (1969). Bivalve mollusk burrowing aided by discordant shell or namentation. Science 166: 634 - 635.CrossRefGoogle Scholar
  35. 35.
    Stanley, S.M. (1970). Relation of shell form to life habits of the Bivalvia. Geological Society of America Memoir 125: 1 - 296.Google Scholar
  36. 36.
    Stanley, S.M. (1977). Coadaptation in the Trigoniidae, a remarkable family of burrowing bivalves. Palaeontology 20: 869 - 899.Google Scholar
  37. 37.
    Stanley, S.M. (1981). Infaunal survival: alternative functions of shell ornamentation in the Bivalvia (Mollusca). Paleobiology 7: 384 - 393.Google Scholar
  38. 38.
    Suckling, D.M. (1984). Laboratory studies on the praying mantis Orthodera ministralis (Mantodea: Mantidae). New Zealand Entomologist 8: 96 - 101.CrossRefGoogle Scholar

Copyright information

© Springer Japan 2003

Authors and Affiliations

  • Enrico Savazzi
    • 1
  1. 1.UppsalaSweden

Personalised recommendations