Pattern Formation by Cell Movement in Closely-Packed Tissues

  • Kei Inouye


Cell movement in 3-dimensional tissues is important in various biological processes such as cell-sorting, wound healing, and metastasis. Unlike solitary cells attached to a fiat surface, motile cells tightly packed in 3-dimensional tissues are under strong mechanical constraints, but nevertheless they can still move actively by getting traction from the neighbouring cells. Here, I will describe some characteristics of cell movements in isolation and within multicellular tissues in the cellular slime mould Dictyostelium, and propose a possible mechanism whereby the cells inside a tissue can get traction from the substratum. Based on this hypothesis, models for cell sorting and for the generation of coherent motion of cells in tissues will also be outlined.


Dictyostelium Discoideum Coherent Motion Dictyostelium Cell Myosin Heavy Chain Gene Cortical Tension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Armstrong, P.B. (1985). The control of cell motility during embryogenesis. Cancer Metastasis Rev. 4, 59–79.CrossRefGoogle Scholar
  2. 2.
    Borisy, G.G. and Svitkina, T.M. (2000). Actin machinery: pushing the envelope. Curr. Opzn. Cell Biol. 12, 104–112.CrossRefGoogle Scholar
  3. 3.
    Clow, P. A. and McNally, J. G. (1999). In vivo observations of myosin Ii dynamics support a role in rear retraction. Mol. Biol. Cell 10, 1309–1323.CrossRefGoogle Scholar
  4. 4.
    Condeelis, J. (1993). Life at the leading edge: the formation of cell protrusions, Ann. Rev. Cell Biel. 9, 411–444.CrossRefGoogle Scholar
  5. 5.
    Dai, J. W., Ting-Beall, H. P., Hochmuth, R. M., Sheetz, M. P. and Titus, M. A. (1999). Myosin I contributes to the generation of resting cortical tension. Biophys. J. 77, 1168–1176.CrossRefGoogle Scholar
  6. 6.
    De Lozanne, A. and Spudich, J. A. (1987). Disruption of the Dictyostelium myosin heavy chain gene by homologous recombination. Science 236, 1086–1091.CrossRefGoogle Scholar
  7. 7.
    Dormann, D., Vasiev, B. and Weijer, C. J. (2000). The control of chemotactic cell movement during Dictyosteliurn morphogenesis. Phil. Trans. R. Soc. Lond. B 355, 983–991.CrossRefGoogle Scholar
  8. 8.
    Dormann, D. and Weijer, C. J. (2001). Propagating chemoattractant waves coordinate periodic cell movement in Dictyostelium slugs. Development 128,453 5–4543.Google Scholar
  9. 9.
    Egeihoff, T. T., Naismith, T. V. and Brozovich, F. V. (1996). Myosin-based cortical tension in Dictyostelium resolved into heavy and light chain-regulated components. J. Muscle Res. Cell Motil. 17, 269–274.CrossRefGoogle Scholar
  10. 10.
    Hegerfeldt, Y., Tusch, M., Brocher, E. B. and Friedl, P. (2002). Collective cell movement in primary melanoma explants: plasticity of cell-cell interaction, betal-integrin function, and migration strategies. Cancer Res. 62, 2125–2130.Google Scholar
  11. 11.
    Inouye, K. and Takeuchi, I. (1979). Analytical studies on migrating, movement of the pseudoplasmodium of Dictyostelium discoideum. Protoplasma 99, 289–304.CrossRefGoogle Scholar
  12. 12.
    Inouye, K. and Takeuchi, I. (1980). Motive force of the migrating pseudoplasmodium of the cellular slime mould Dictyostelium discoideum. J. Cell Sci. 41, 53–64.Google Scholar
  13. 13.
    Inouye, K. (1984). Measurement of the motive force of the migrating slug of Dictyostelium discoideum by a centrifuge method. Protoplasma 121, 171–177.CrossRefGoogle Scholar
  14. 14.
    Knecht, D. A. and Loomis, W. F. (1987). Antisense RNA inactivation of myosin heavy chain gene expression in Dictyostelium discoideurn. Science 236, 1081–1085.CrossRefGoogle Scholar
  15. 15.
    Laevsky, G. and Knecht. D. A. (2001). Under-agarose folate chemotaxis of Dictyostelium amoebae in permissive and mechanically inhibited conditions. Biotechniques 31, 1140–1149.Google Scholar
  16. 16.
    Lee, E., Pang, K. and Knecht, D. (2001). The regulation of actin polymerization and cross-linking in Dictyostelium. Biochirn. Biophys. Acta 1525, 217–227.CrossRefGoogle Scholar
  17. 17.
    Moores, S. L., Sabry, J. H. and Spudich, J. A. (1996). Myosin dynamics in live Dictyostelium. cells. Proc. Natl. Acad. Sci. USA 93, 443–446.CrossRefGoogle Scholar
  18. 18.
    Otsuka, H. (1994). Relationship between the movements of slug cells and chemotaxis in Dictyostelium discoideurn. (in Japanese). Master’s Thesis, Kyoto University.Google Scholar
  19. 19.
    Pang, K. M., Lee, E. and Knecht, D. A. (1998). Use of a fusion protein between GFP and an actin-binding domain to visualize transient filamentous-actin structures. Curr. Biol. 8, 405–408.CrossRefGoogle Scholar
  20. 20.
    Pasternak, C., Spudich, J. A. and Elson, E. L. (1989). Capping of surface receptors and concomitant cortical tension are generated by conventional myosin. Nature 341, 549–551.CrossRefGoogle Scholar
  21. 21.
    Patel, H., Guo, K. D., Parent, C., Gross, J., Devreotes, P. N. and Weijer, C. J. (2000). A temperature-sensitive adenylyl cyclase mutant of Dictyostelium. EMBO J. 19, 2247–2256.CrossRefGoogle Scholar
  22. 22.
    Rappel, W. J., Nicol, A., Sarkissian, A., Levine, H. and Loomis, W. F. (1999). Self-organized vortex state in two-dimensional Dictyostelium dynamics. Phys. Rev. Lett. 83, 1247–1250.CrossRefGoogle Scholar
  23. 23.
    Schindl, M., Wallraff, E., Deubzer, B., Witke, W., Gerisch, G. and Sackmann, E. (1995). Cell-substrate interactions and locomotion of Dictyostelium wild-type and mutants defective in three cytoskeletal proteins: A study using quantitative reflection interference contrast microscopy. Biophys. J. 68, 1177–1190.CrossRefGoogle Scholar
  24. 24.
    Schwarz, E. C., Neuhaus, E. N.I., Kistler, C., Henkel, A. W. and Soldati, T. (2000). Dictyostelium myosin IK is involved in the maintenance of cortical tension and affects motility and phagocytosis. J. Cell Sci. 113, 621–633.Google Scholar
  25. 25.
    Shelden, E. and Knecht, D. A. (1995), Mutants lacking myosin II cannot resist forces generated during multicellular morphogenesis. J. Cell Sci. 108, 1105–1115.Google Scholar
  26. 26.
    Trinkaus, J. P. (1988). Directional cell movement during early development of the teleost Blennius pholis: I. Formation of epithelial cell clusters and their pattern and mechanism of movement. J. Exp. Zool. 245, 157–186.CrossRefGoogle Scholar
  27. 27.
    Umeda, T. (1989). A mathematical model for cell sorting, migration and shape in the slug stage of Dictyostelium discoideum. Bull. Math. Biol. 51, 485–500.MATHGoogle Scholar
  28. 28.
    Umeda,T. and Inouye, K. (1999). Theoretical model for morphogenesis and cell sorting in Dictyostelium discoideum. Physica D, 126, 189–200.CrossRefGoogle Scholar
  29. 29.
    Umeda, T. and Inouye, K. (2002). Possible role of contact following in the generation of coherent motion of Dictyostelium cells. J. theor. Biol. 219, 301–308.MathSciNetCrossRefGoogle Scholar
  30. 30.
    Vicker, M. G. (2002). F-actin assembly in Diceyosteliurn cell locomotion and shape oscillations propagates as a self-organized reaction-diffusion wave. FEBS Lett. 510, 5–9.CrossRefGoogle Scholar
  31. 31.
    Wessels, D., Soll, D. R., Knecht, D., Loomis, W. F., De Lozanne, A. and Spudich, J. (1988). Cell motility and chemotaxis in Dictyostelium amebae lacking myosin heavy chain. Dey. Biol, 128, 164–177.CrossRefGoogle Scholar
  32. 32.
    Xu, X. X. S., Lee, E. Chen, T. L., Kuczmarski, E., Chisholm, R. L. and Knecht, D. A. (2001). During multicellular migration, myosin II serves a structural role independent of its motor function. Dev. Biol. 232, 255–264.Google Scholar
  33. 33.
    Yoshida, K. and Inouye, K. (2001). Myosin II-dependent cylindrical protrusions induced by quinine in Dictyostelium: antagonizing effects of actin polymerization at the leading edge. J. Cell Sci. 114, 2155–2165.Google Scholar
  34. 34.
    Yumura, S., Mori, H. and Fukui, Y. (1984). Localization of actin and myosin for the study of ameboid movement in Dictyostelium using improved immunofluorescence. J. Cell Biol. 99, 894–899.CrossRefGoogle Scholar
  35. 35.
    Yumura, S. (1996). Rapid redistribution of myosin Il in living Dictyostelium amoebae, as revealed by fluorescent probes introduced by electroporation. Protoplasma 192, 217–227.CrossRefGoogle Scholar
  36. 36.
    Yumura, S. and Fukui, Y. (1998). Spatiotemporal dynamics of actin concentration during cytokinesis and locomotion in Dictyosteliurn. J. Cell Sci. 111, 2097–2108.Google Scholar

Copyright information

© Springer Japan 2003

Authors and Affiliations

  • Kei Inouye
    • 1
  1. 1.Department of Botany, Graduate School of ScienceKyoto UniversityKyotoJapan

Personalised recommendations