Regulation of Inflorescence Architecture and Organ Shape by the ERECTA Gene in Arabidopsis

  • Keiko U. Torii
  • Laurel A. Hanson
  • Caroline A. B. Josefsson
  • Elena D. Shpak


The architecture of higher plants is largely determined by the size, shape, and arrangement of the shoot organs that are formed in a reiterative manner by the shoot apical meristem. Immense variations in plant architecture, due to altered shape, size, and position of the individual shoot unit, has significance in adaptation as well as domestication of crop plants. The Arabidopsis erecta mutant displays a dramatic alteration in inflorescence architecture and organ shape. Morphometric analysis of representative erecta alleles with different severities revealed that ERECTA regulates pedicel length and plant size in a quantitative manner but has complex effects on floral organ size: The organs of erecta mutants contain a lesser number of larger, and isotropically expanded cortex cells, suggesting that ERECTA is required for a coordinated cell proliferation or cell expansion within the same tissue layer (i.e. cortex). The molecular identity of ERECTA as a leucine-rich repeat receptor-like kinase (LRR-RLK) is consistent with its predicted role in cell-cell coordination.


Floral Organ Shoot Apical Meristem Floral Meristem Pedicel Length Inflorescence Architecture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bowman, J.L. (1993). Arabidopsis: An Atlas of Morphology and Development. New York: Springer-Verlag.Google Scholar
  2. 2.
    Bradley, D., Ratcliffe, O., Vincent, C., Carpenter, R. and Coen, E. (1997). Inflorescence commitment and architecture in Arabidopsis. Science, 275, 80–83.CrossRefGoogle Scholar
  3. 3.
    Clark, S.E., Williams, R.W. and Meyerowitz, E.M. (1997). The CLAVATAI gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell, 89, 575–585.CrossRefGoogle Scholar
  4. 4.
    Doebley, J., Stec, A. and Hubbard, L. (1997). The evolution of apical diminance in maize. Nature, 386, 485–488.CrossRefGoogle Scholar
  5. 5.
    Douglas, S.J., Chuck, G., Dengler, R.E., Pelecanda, L. and Riggs, C.D. (2002). KNAT1 and ERECTA regulate inflorescence architecture in Arabidopsis. Plant Cell, 14, 547–558.CrossRefGoogle Scholar
  6. 6.
    Galweiler, L., Guan, C., Muller, A., Wisman, E., Mendgen, K., Yephremov, A. and Palme, K. (1998). Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science, 282, 2226–2230.CrossRefGoogle Scholar
  7. 7.
    Jones, D.A. and Jones, J.D.G. (1997). The role of Leucine-rich repeats in plant defences. Advances in Botanical Research incorporating Advances us Plant Pathology, 24, 90–167.Google Scholar
  8. 8.
    Juenger, T., Purugganan, M. and Mackay, T.F. (2000). Quantitative trait loci for floral morphology in Arabidopsis thaliana. Genetics, 156, 1379–1392.Google Scholar
  9. 9.
    Kaya, H., Shibahara, K.I., Taoka, K.I., Iwabuchi, M., Stillman, B. and Araki, T. (2001). FASCIATA genes for chromatin assembly factor-1 in arabidopsis maintain the cellular organization of apical meristems. Cell, 104, 131–142.CrossRefGoogle Scholar
  10. 10.
    Komeda, Y., Takahashi, T. and Hanzaw-a, Y. (1998). Development of inflorescneces in Arabidopsis thaliana. J.Plant Res, 111, 283–288.CrossRefGoogle Scholar
  11. 11.
    Krizek, B.A. (1999). Ectopic expression AINTEGUMENTA in Arabidopsis plants results in increased growth of floral organs. Developmental Genetics, 25, 224–236.CrossRefGoogle Scholar
  12. 12.
    Lease, K.A., Lau, N.Y., Schuster, R.A., Toni, K.U. and Walker, J.C. (2001). Receptor serine/threonine protein kinases in signaling: analysis of the Erecta receptor-like kinase of Arabidopsis thaliana. New Phytol, 151, 133–144.CrossRefGoogle Scholar
  13. 13.
    Lease, K.A., Wen, J., Li, J., Doke, J.T., Liscum, E. and Walker, J.C. (2001). A mutant Arabidopsis heterotrimeric G-protein beta subunit affects leaf, flower, and fruit development. Plant Cell, 13, 2631–2641.Google Scholar
  14. 14.
    Leyser, H. and Furrier, I. (1992). Characterization of 3 shoot apical meristem mutants of Arabidopsis thaliana. Development, 116, 397–403.Google Scholar
  15. 15.
    Mizukami, Y. and Fischer, R. (2000). Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proc Nati Acad Sci USA, 97, 942–947.CrossRefGoogle Scholar
  16. 16.
    Okada, K., Ueda, J., Komaki, M.K., Bell, C.J. and Shimura, Y. (1991). Requirement of the Auxin Polar Transport System in Early Stages of Arabidopsis Floral Bud Formation. Plant Cell, 3, 677–684.Google Scholar
  17. 17.
    Reinhardt, D., Mandel, T. and Kuhlemeier, C. (2000). Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell, 12, 507–518.Google Scholar
  18. 18.
    Shu, G., Amaral, W., Hiieman, L.C. and Baum, D.A. (2000). LEAFY and the evolution of rosette flowering in violet cress (Jonopsidium acaule, Brassicaeeae). Ara, I Bot, 87, 634–641.Google Scholar
  19. 19.
    Smyth, D.R., Bowman. J.L. and Meyerowitz, E.M. (1990). Early, flower development in Arabidopsis. Plant Cell, 2, 755–767.Google Scholar
  20. 20.
    Suzuki, M., Takahashi, T. and Komeda, Y. (2002). Formation of corymb-like inflorescences due to delay in bolting and flower development in the corymbosa2 mutant of Arabidopsis. Plant Cell Physiol, 43, 298–306.CrossRefGoogle Scholar
  21. 21.
    Torii, K.U., Mitsukawa, N., Oosumi, T., Matsuura, Y., Yokoyama, P. Whittier, R.F. and Komeda, Y. (1996). The Arabidopsis ERECTA gene encode, a putative receptor protein kinase with extracellular leucine-rich repeats. Plant Cell, 8. 735–746.Google Scholar
  22. 22.
    Venglat, S.P., Dumonceaux, T., Rozwadowski, K., Parnell, L., Babic, V., Keller, W., Martienssen, R., Selvaraj, G. and Datla, R. (2002). The homeobox gene BREVIPEDICELLUS is a key regulator of inflorescence architecture in Arabidopsis.. Proc Nati Aced Sci USA, 99, 4730–4735.CrossRefGoogle Scholar
  23. 23.
    Weberling, F. (1989). Morphology of Flowers and Inflorescences. Cambridge: Cambridge University Press.Google Scholar
  24. 24.
    Weigel, D. and Nilsson, O. (1995). A developmental switch sufficient for flower initiation in diverse plants. Nature, 377, 495–500.CrossRefGoogle Scholar

Copyright information

© Springer Japan 2003

Authors and Affiliations

  • Keiko U. Torii
    • 1
    • 2
  • Laurel A. Hanson
    • 1
  • Caroline A. B. Josefsson
    • 1
  • Elena D. Shpak
    • 1
  1. 1.Department of BiologyUniversity of WashingtonSeattleUSA
  2. 2.Japan Science and Technology CorporationCRESTJapan

Personalised recommendations