Homogeneity and Smoothness Analysis for Quantifying a Longitudinal Categorical Variable

  • Kohei Adachi


A variant of homogeneity analysis is proposed to analyze longitudinal data that describe the categories chosen by individuals at each of time-points. In the proposed method, individuals are given the scores that are natural cubic spline functions of time, and categories are given time-invariant scores. Loss of homogeneity between individual and category scores is combined with loss of smoothness of individual scores, to form a penalized loss function. It is minimized using eigenvalue or singular value decomposition. The weight of smoothness relative to homogeneity is chosen by a cross-validation procedure. The resulting scores yield a graphical representation of individuals’ trajectories with category points, which allows us to grasp longitudinal changes in individuals.


Penalty Function Spline Function Correct Classification Rate Optimal Scaling Category Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adachi, K. (2000a). Growth curve representation and clustering under optimal scaling of repeated choice data. Behaviormetrika, 27, 15–32.CrossRefGoogle Scholar
  2. Adachi, K. (2000b). Optimal scaling of longitudinal choice variable with time-varying representation of individuals. British Journal of Mathematical and Statistical Psychology, 53, 233–253.CrossRefGoogle Scholar
  3. Bijleveld, C.C.J.H. and de Leeuw, J. (1991). Fitting longitudinal reduced-rank regression models by alternating least squares. Psychometrika, 56, 433–447.MathSciNetCrossRefMATHGoogle Scholar
  4. Bijleveld, C. C. J. H. and van der Burg, E. (1998). Analysis of longitudinal categorical data using optimal scaling techniques. In C.C.J.H. Bijleveld and L.J.T. van der Kamp (Eds.), Longitudinal data analysis: Designs, models and methods. Sage, London.Google Scholar
  5. de Leeuw, J., van der Heijden, P. G. M., and Kreft, I. (1985). Homogeneity analysis of event history data. Methods of Operations Research, 50, 299–316.Google Scholar
  6. Gifi, A. (1990). Nonlinear multivariate analysis. Wiley, Chichester.MATHGoogle Scholar
  7. Green, P. J. and Silverman, B. W. (1994). Nonparametric regression and generalized linear models: A roughness penalty approach. Chapman & Hall, London.CrossRefMATHGoogle Scholar
  8. Greenacre, M. J. (1984). Theory and applications of correspondence analysis. Academic Press, London.MATHGoogle Scholar
  9. Hastie, T., Buja, A., and Tibshirani, R. (1995). Penalized discriminant analysis. Annals of Statistics, 23, 73–102.MathSciNetCrossRefMATHGoogle Scholar
  10. Hayashi, C. (1952). On the prediction of phenomena from qualitative data and the quantification of qualitative data from the mathematico-statistical point of view. Annals of the Institute of Statistical Mathematics, 3, 69–98.CrossRefMATHGoogle Scholar
  11. Meulman, J. J., Heiser, W. J., and SPSS Inc. (1999). SPSS categories 10.0. SPSS Inc., Chicago.Google Scholar
  12. Nishisato, S. (1980). Analysis of categorical data: Dual scaling and its applications. University of Toronto Press, Toronto.MATHGoogle Scholar
  13. Ramsay, J. O. and Silverman, B. W. (1997). Functional data analysis. Springer, New York.CrossRefMATHGoogle Scholar
  14. Schoenberg, I. J. (1964). Spline functions and the problem of graduation. Proceedings of the National Academy of Sciences of the United States, 52, 947–950.MathSciNetCrossRefMATHGoogle Scholar
  15. van Buuren, S. (1990). Optimal scaling of time series. DSWO Press, Leiden.Google Scholar
  16. van Buuren, S. (1996). Optimal transformations for categorical autoregressive time series. Statistica Neerlandica, 51, 90–106.CrossRefGoogle Scholar

Copyright information

© Springer Japan 2002

Authors and Affiliations

  • Kohei Adachi
    • 1
  1. 1.Koshien UniversityTakarazuka, HyogoJapan

Personalised recommendations