Measurement and Multivariate Analysis

  • Shizuhiko Nishisato
Conference paper


This paper is prepared to serve the purpose of introducing the readers to the main theme of this conference. The emphasis is placed on the introduction of desirable properties of measurements so as to make the outcomes of multivariate analysis meaningful. Starting with such fundamental requirements for measurements to be valid as metric axioms and the Young-Householder theorem, the paper is then extended to the discussion of two topics where we see important interplays between measurement and multivariate analysis. The paper is concluded with a note on the importance of a well-balanced interplay between measurement and multivariate analysis, to which end this international and interdisciplinary conference was planned and successfully organized.


Negative Eigenvalue Multiple Correspondence Analysis Weak Order Single Axis Polychoric Correlation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beltrami, E. (1873). Sulle funzioni bilineari [On the bilinear releations[. in G. Battagline and E. Pergola (Eds.) Giornale di hfathematiche, 11, 98–106.Google Scholar
  2. Bentler, P.M. (1989). EQS structural equation program manual. Los Angeles: BMDP Statistical Software.Google Scholar
  3. Bock, R. D. (1960). Methods and applications of optimal scaling. The University of North Carolina Psychometric Laboratory Research Memorandum, No. 5.Google Scholar
  4. Bollen, K.A. (1989). Structural equations with latent variables. New York: Wiley Interscience.MATHGoogle Scholar
  5. Bollen. K. and Long, S. (eds.) (1993) Testing structural equation models. Newbury Park: Sage.Google Scholar
  6. Cronbach, L.J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16, 297–334.CrossRefGoogle Scholar
  7. de Leeuw, J. (1973). Canonical analysis of relational data. Department of Data Theory, Leiden University, Report RN 007–68.Google Scholar
  8. Eckart, C. and Young, G. (1936). The approximation of one matrix by another of lower rank. Psychometrika, 1, 211–218.CrossRefMATHGoogle Scholar
  9. Escofier-Cordier, E. (1969). L’analyse factorielle des correspondances. Bureau Universitaire de Recherche Operationelle, Cahiers, Série Recherche, 13, 25–29.Google Scholar
  10. Gabriel, K.R. (1971). The biplot graphical display of matrices with applications to principal component analysis. Biometrika, 58, 453–457.MathSciNetCrossRefMATHGoogle Scholar
  11. Gorsuch, R.L. (1983). Factor analysis ( second edition ). Hillsdale, N.J.: Lawrence Erlbaum.Google Scholar
  12. Hamming, R.`V. (1950). error detecting and error correcting codes. The Bell Sys-tern Technical Journal, 26, 147–160.Google Scholar
  13. Hayashi, C. (1950). On the quantification of qualitative data from the mathematicostatistical point of view. Annals of the Institute of Statistical Mathematics, 2, 35–47.MathSciNetCrossRefMATHGoogle Scholar
  14. Hand, D. J. (1996). Statistics and the theory of measurement. Journal of the Royal Statistical Society, A, 150, Part 3, 445–492.Google Scholar
  15. Hemsworth, D. (2002). The use of dual scaling for the production of correlation matrices for use in structural equation modeling. Unpublished Ph.D. thesis, University of Toronto.Google Scholar
  16. Hill, M.O. (1974). Correspondence analysis: A neglected multivariate method. Applied Statistics, 23, 340–354.CrossRefGoogle Scholar
  17. Hirschfeld, H.O. (1935). A connection between correlation and contingency. Cambridge Philosophical Society Proceedings, 31, 520–524.CrossRefGoogle Scholar
  18. Horst, P. (1935). Measuring complex attitudes. Journal of Social Psychology, 6, 369–374.CrossRefGoogle Scholar
  19. Hotelling, H. (1936). Relation between two sets of variables. Biometrika, 28, 321–377.MATHGoogle Scholar
  20. Jordan, C. (1874). Mémoire sur les formes bilinieares [Note on bilinear forms]. Journal de Mathématiques Pures et Appliquées, Deuxiéme Série, 19, 35–54.MATHGoogle Scholar
  21. J6reskog, K. and Sorbom, D. (1981). Analysis of linear structural relationships by maximum likelihood and least squares methods. ( 81–8 ). Uppsala: University of Uppsala.Google Scholar
  22. Kendall, M.G. and Stuart, A. (1961). The advanced theory of statistics. Volume II. Longon: Griffin.Google Scholar
  23. Minkowski, H. (1896). Geometrie der Zahlen. Leipzig: Teubner.Google Scholar
  24. Muthén, B. 0. (1987). LISCOMP: Analysis of linear structure equations with a comprehensive measurement model. Moorresville, Indiana: Scientific Software.Google Scholar
  25. Nishisato, S. (1980). Analysis of categorical data. Toronto: University of Toronto Press.MATHGoogle Scholar
  26. Nishisato, S. (1993). On quantifying different types of categorical data. Psychometrika. 58, 617–629.CrossRefMATHGoogle Scholar
  27. Nishisato, S. (1994). Elements of dual scaling. Hillsdale, N.J.: Lawrence Erlbaum.Google Scholar
  28. Nishisato, S. (1996). Gleaning in the field of dual scaling. Psychometrika, 61, 559–599.CrossRefMATHGoogle Scholar
  29. Nishisato, S. (1998). Unifying a spectrum of data types under a comprehensive framework for data analysis. A talk presented at a symposium at the Institute of Statistical Mathematics, Tokyo, Japan.Google Scholar
  30. Nishisato, S. (2000). Data types and information: Beyond the current practice of data analysis. In Decker, R., and Gaul, W. (eds.), Classification and Information Processing at the Turn of the Millennium. Heidelberg: Springer-Verlag, 40–51.CrossRefGoogle Scholar
  31. Nishisato, S., and Arri, P. S. (1976). Nonlinear programming approach to optimal scaling of partially ordered categories. Psychometrika, 40, 525–548.CrossRefGoogle Scholar
  32. Nishisato, S. and Hemsworth, D. (2001, in press). Quantification of ordinal variables: A critical inquiry into polychoric and canonical correlation. To appear in Baba. Y. et al. (eds.), Recent Advances in Statistical Research and Data Analysis. Tokyo: Springer-Verlag.Google Scholar
  33. Nishisato, S. and Sheu, W. J. (1980). Piecewise method of reciprocal averages for dual scaling of multiple-choice data. Psychometrika, 45, 467–478.CrossRefMATHGoogle Scholar
  34. Pearson, K. (1901). On lines and planes of closest fit to systems of points in space. Philosophical Magazine and Journal of Science, Series 6, 2, 559–572.Google Scholar
  35. Pierce, J.R. (1961). Symbols, signals and noise: The nature and process of communication. New York Harper and Row.Google Scholar
  36. Richardson, M. and Kuder, G.F. (1933). Making a rating scale that measures. Personnel Journal, 12, 36–40.Google Scholar
  37. Schmidt, E. (1907). Zür Teheorie der linearen and nichtlinearen Integralgleichungen. Erster Teil. Entwicklung willk-“urlicher Funktionen nach Systemen vorgeschriebener [On theory of linear and nonlinear integral equations. Part one. Development of arbitrary functions according to prescribed systems]. Mathematische Annalen, 63, 433–476.MathSciNetCrossRefMATHGoogle Scholar
  38. Stevens, S. S. (1951). Mathematics, measurement, and psychophysics. In Stevens, S.S. (ed.), Handbook of experimental psychology. Wiley, Chapter 1, 1–19.Google Scholar
  39. Tallis, G. (1962). The maximum likelihood estimation of correlation from contingency tables. Biometrics, 18, 342–353.MathSciNetCrossRefMATHGoogle Scholar
  40. Torgerson, W.S. (1952). Multidimensional scaling. I. Theory and method. Psychometrika, 17, 401–419.MathSciNetCrossRefMATHGoogle Scholar
  41. Torgerson, W. S. (1958). Theory and methods of scaling. New York: Wiley.Google Scholar
  42. Yanai, H., Shigemasu, K., Maekawa, S. and Ichikawa, M. (1990). Inshi bunseki (Factor analysis. Tokyo: Asakura Shoten (in Japanese).Google Scholar
  43. Young, G. and Householder, A.S. (1938). A note on multi-dimensional psychophysical analysis. Psychometrika, 6, 331–333.CrossRefGoogle Scholar

Copyright information

© Springer Japan 2002

Authors and Affiliations

  • Shizuhiko Nishisato
    • 1
  1. 1.University of TorontoTorontoCanada

Personalised recommendations