Advertisement

Mining Web Navigation Path Fragments

  • Wolfgang Gaul
  • Lars Schmidt-Thieme
Conference paper

Summary

For many web usage mining applications like, e.g., user segmentation, it is crucial to compare navigation paths of different users. We model user navigation path fragments by generalized subsequences that take into consideration local deviations but still sketch the global user navigational behavior. This paper presents a new algorithm of apriori type for mining all generalized subsequences of user navigation paths with prescribed minimal occurrence from a given database.

Keywords

Execution Time Association Rule Recommender System Generalize Subsequence Minimal Support 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, R. and Srikant, R. (1994): Fast Algorithms for Mining Association Rules. In: Bocca,.J.B., Jarke, M., and Zaniolo, C. (eds.): Proceedings of the 20th International Conference on Very Large Data Bases (VLDB’94), September 12–15, 1994, Santiago de Chile, Morgan Kaufmann, Chile, 487–499.Google Scholar
  2. Agrawal, R. and Srikant, R. (1995): Mining Sequential Patterns. In: Yu, P.S., and Chen, A.L.P. (eds.): Proceedings of the Eleventh International Conference on Data Engineering, March 6–10, 1995, Taipei, Taiwan, IEEE Computer Society, 3–14.Google Scholar
  3. Borges, J. and Levene, M. (1998): Mining Association Rules in Hypertext Databases. In: Agrawal, R. (ed.): Proceedings/The Fourth International Conference on Knowledge Discovery and Data Mining, August 27–31, 1998, New York, New York, Menlo Park, Calif., 149–153.Google Scholar
  4. Borges, J. and Levene, M. (1999): Data Mining of User Navigation Patterns. In: Proceedings of the Workshop on Web Usage Analysis and User Profiling (WEBKDD’99), August 15, 1999, San Diego, CA, Springer, 31–36.Google Scholar
  5. Buechner, A.G., Baumgarten, M., Anand, S.S., Mulvenna, M.D., and Hughes, J.G. (1999): Navigation Pattern Discovery from Internet Data. In: Proceedings of the Workshop on Web Usage Analysis and User Profiling (WEBKDD’99), August 15, 1999, San Diego, CA, Springer, 25–30.Google Scholar
  6. Chen, M.-S., Park, J.S., and Yu, P.S. (1996): Data Mining for Path Traversal Patterns in a Web Environment. In: Proceedings of the 16th International Conference on Distributed Computing Systems (ICDCS), May 27–30, 1996, Hong Kong, IEEE Computer Society, 385–392.Google Scholar
  7. Chen, M.-S., Park, J.S., and Yu, P.S. (1998): Efficient Data Mining for Path Traversal Patterns. IEEE Transactions on Knowledge 6 Data Engineering 10 /2 (1998), 209–221.CrossRefGoogle Scholar
  8. Cooley, R., Mobasher, B., and Srivastava, J. (1999): Data Preparation for Mining World Wide Web Browsing Patterns. In 9th International Conference on Tools with Artificial Intelligence (ICTAI ‘87), November 3–8, 1997, Newport Beach, CA.Google Scholar
  9. Mannila, H., and Toivonen, H. (1996): Discovering generalized episodes using minimal occurrences. In: The Second International Conference on Knowledge Discovery and Data Mining (KDD ‘86), Portland, Oregon, August 2–4 1996, 146–151. Mobasher, B. (2000): Mining Web Usage Data for Automatic Site Personalization. To appear in Studies in Classification, Data Analysis, and Knowledge Organization 2000.Google Scholar
  10. Mueller, A. (1995): Fast Sequential and Parallel Algorithms for Association Rule Mining: A Comparison. Department of Computer Science, University of Maryland-College Park, CS-TR-3515.Google Scholar
  11. Spiliopoulou, M. and Faulstich, L.C. (1998): WUM: A Tool for Web Utilization Analysis. In: Atzeni, P., Mendelzon, A., and Mecca, G. (eds.): The World Wide Web and Databases, International Workshop WebDB’98, Valencia, Spain, March 27–28, 1998, LNCS 1590, Springer, 184–203.Google Scholar
  12. Spiliopoulou, M., Faulstich, L.C., and Winkler, K. (1999): A Data Miner Analyzing the Navigational Behavior of Web Users. In: Proc. of the Workshop on Machine Learning in User Modeling of the ACAI’99 Int. Conf., Creta, Greece, July 1999.Google Scholar
  13. Spiliopoulou, M. (1999): The Laborious Way from Data Mining to Web Mining. Int. Journal of Comp. Sys., Sci. B Eng. 14 (1999), Special Issue on “Semantics of the Web”, 113–126.Google Scholar
  14. Srikant, R. and Agrawal, R. (1996): Mining Sequential Patterns: Generalizations and Performance Improvements. In: Apers, P.M.G., Bouzeghoub, M., and Gardarin, G. (eds.): Advances in Database Technology - EDBT’96, 5th International Conference on Extending Database Technology, Avignon, France, March 2529, 1996, Proceedings. LNCS 1057, Springer.Google Scholar
  15. Viveros, M.S., Elo-Dean, S., Wright, M.A., and Duri, S.S. (1997): Visitor’s Behavior: Mining Web Servers. In: Proceedings of the 1st International Conference on the Practical Application of Knowledge Discovery and Data Mining, Blackpool 1997, 257–269.Google Scholar
  16. Yan, T.W., Jacobsen, M., Garcia-Molina, H., and Dayal, U. (1996): From User Access Patterns to Dynamic Hypertext Linking. In: Fifth International World Wide Web Conference May 6–10, 1996, Paris, France.Google Scholar

Copyright information

© Springer Japan 2002

Authors and Affiliations

  • Wolfgang Gaul
    • 1
  • Lars Schmidt-Thieme
    • 1
  1. 1.Institut für Entscheidungstheorie und UnternehmensforschungUniversity of KarlsruheKarlsruheGermany

Personalised recommendations