A Constrained Clusterwise Regression Procedure for Benefit Segmentation

  • Daniel Baier
Conference paper
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)


A new procedure for benefit segmentation using clusterwise regression is presented. Constraints on the model parameters ensure that the derived benefit segments can be easily attached to single competing products under consideration. The new procedure is compared to other one-stage and two-stage procedures for benefit segmentation using data from the European air freight market.


Loss Function Latent Class Market Structure Conjoint Analysis Iteration Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baier, D., Gaul, W. (1995): Classification and Representation Using Conjoint Data, In: From Data to Knowledge:, Gaul, W., D. Pfeifer (eds.), Berlin, Springer, 298–307.Google Scholar
  2. Baier, D., Gaul, W., Schader, M. (1996): Two-Mode Overlapping Clustering With Applications to Simultaneous Benefit Segmentation and Market Structuring, To appear in: Classification, Data Analysis and Knowledge Organization, Klar, R., Opitz, O. (eds.), Berlin, Springer.Google Scholar
  3. Bock, H. H. (1969): The Equivalence of Two Extremal Problems and its Application to the Iterative Classification of Multivariate Data, In: Report on the Conference Medizinische Statistik, Forschungsinstitut Oberwolfach.Google Scholar
  4. DeSarbo, W. S., Cron, W. L. (1988): A Maximum Likelihood Methodology for Clusterwise Regression, Journal of Classification, 5, 249–282.MathSciNetMATHCrossRefGoogle Scholar
  5. DeSarbo, W. S., Oliver, R., Rangaswamy, A. (1989): A Simulated Annealing Methodology for Clusterwise Linear Regression, Psychornetrika, 54, 707–736.CrossRefGoogle Scholar
  6. DeSarbo, W. S., Wedel, M., Vriens, M., Ramaswamy, V. (1992): Latent Class Metric Conjoint Analysis, Marketing Letters, 3, 273–288.CrossRefGoogle Scholar
  7. Green, P. E., Helson, K. (1989): Cross-Validation Assessment of Alternatives to Individual-Level Conjoint Analysis: A Case Study, Journal of Marketing Research, 26, 346–350.CrossRefGoogle Scholar
  8. Green, P. E., Krieger, A. M. (1991): Segmenting Markets with Conjoint Analysis, Journal of Marketing, 55, 20–31.CrossRefGoogle Scholar
  9. Green, P. E., Srinivasan V. (1990): Conjoint Analysis in Marketing: New Developments with Implications for Research and Practice, Journal of Marketing, 54, 3–15.CrossRefGoogle Scholar
  10. Kamakura, W. A. (1988): A Least Squares Procedure for Benefit Segmentation with Conjoint Experiments, Journal of Marketing Research, 25, May, 157–167.Google Scholar
  11. Späth, H. (1983): Cluster-Formation und -Analyse, Oldenbourg, Miinchen.MATHGoogle Scholar
  12. Wedel, M., DeSarbo, W. S. (1994): A Review of Recent Developments in Latent Class Regression Models, In: Advanced Methods of Marketing Research, Bagozzi, R. P. (ed.): Basil Blackwell, Cambridge, MA, 352–388.Google Scholar
  13. Wedel, M., Kistemaker, C. (1989): Consumer Benefit Segmentation Using Clusterwise Linear Regression, International Journal of Research in Marketing, 6, 45–49.CrossRefGoogle Scholar
  14. Wedel, M., Steenkamp, J.-B. E. M. (1989): A Fuzzy Clusterwise Regression Approach to Benefit Segmentation, International Journal of Research in Marketing, 6, 241–258.CrossRefGoogle Scholar
  15. Wedel, M., Steenkamp, J.-B. E. M. (1991): A Clusterwise Regression Method for Simultaneous Fuzzy Market Structuring and Benefit Segmentation, Journal of Marketing Research, 28, November, 385–396.Google Scholar
  16. Wittink, D. R., Vriens, M., Burhenne, W. (1994): Commercial Use of Conjoint Analysis in Europe: Results and Critical Reflections, International Journal of Research in Marketing, 11. 41–52.CrossRefGoogle Scholar

Copyright information

© Springer Japan 1998

Authors and Affiliations

  • Daniel Baier
    • 1
  1. 1.Institute of Decision Theory and Operations ResearchUniversity of KarlsruheKarlsruheGermany

Personalised recommendations