Using the Wavelet Transform for Multivariate Data Analysis and Time Series Analysis

  • Fionn Murtagh
  • Alexandre Aussem
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)


We discuss the use of orthogonal wavelet transforms in multivariate data analysis methods such as clustering and dimensionality reduction. Wavelet transforms allow us to introduce multiresolution approximation, and multiscale nonparametric regression or smoothing, in a natural and integrated way into the data analysis. Applications illustrate the powerfulness of this new perspective on data analysis.


Wavelet Transform Wavelet Coefficient Multivariate Data Analysis Orthogonal Wavelet Detail Signal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aussem, A. and Murtagh, F. (1996): Combining neural network forecasts on wavelet-transformed time series, Connection Science, in press.Google Scholar
  2. Bhatia, M., Karl, W.C. and Willsky, A.S. (1996): A wavelet-based method for multiscale tomographic reconstruction, IEEE Transactions on Medical Imaging, 15, 92–101.CrossRefGoogle Scholar
  3. Bijaoui, A., Starck, J.-L. and Murtagh, F. (1994): Restauration des images multi-échelles par l’algorithme à trous, Traitement du Signal, 11, 229–243.MATHGoogle Scholar
  4. Bruce, A. and Gao, H.-Y. (1994): S+Wavelets User’s Manual, Version 1. 0, Seattle, WA: StatSci Division, MathSoft Inc.Google Scholar
  5. Daubechies. I. (1992): Ten Lectures on Wavelets, Philadelphia: SIAM.Google Scholar
  6. Holschneider, M., Kronland-Martinet, R., Morlet. J. and Tchamitchiau, Pli. (1989): A real-time algorithm for signal analysis with the help of the wavelet transform, in J.M. Combes, A. Grossmann and Ph. Tchamitchian (eds.), Wavelets: Tinge-Frequency:Methods and Phase Space, Berlin: Springer-Verlag, 286–297.Google Scholar
  7. Murtagh, F. (1985): Clustering Algorithms, Würzburg: Physica-Verlag.MATHGoogle Scholar
  8. Murtagh, F. and Hernandez-Pajares, M. (1995): The Kohonen self-organizing feature reap method: an assessment, Journal of Classification, 12. 165–190.MATHCrossRefGoogle Scholar
  9. Murtagh, F. (1996): Wedding the wavelet transform and multivariate data analysis, Journal of Classification, submitted.Google Scholar
  10. Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (1992): Numerical Recipes, 2nd ed., Chapter 13, New York: Cambridge University Press.Google Scholar
  11. Shensa, M.J. (1992): The discrete wavelet transform: wedding the à trous and Mallat algorithms, IEEE Transactions on Signal Processing, 40, 2464–2482.MATHCrossRefGoogle Scholar
  12. Späth, H. (1985): Cluster Dissection and Analysis, Chichester: Ellis Horwood.MATHGoogle Scholar
  13. Starck, J.-L. and Bijaoui, A. (1994): Filtering and deconvolution by the wavelet transform, Signal Processing, 35, 195–211.MATHCrossRefGoogle Scholar
  14. Starck, J.-L., Bija.oui, A. and Murtagh, F. (1995): Multiresolution support applied to image filtering and deconvolution, Graphical Models and Image Processing, 57, 420–431.CrossRefGoogle Scholar
  15. Strang, G. (1989): Wavelets and dilation equations: a brief introduction, SIAM Review, 31, 614–627.MathSciNetMATHCrossRefGoogle Scholar
  16. Strang, G. and Nguyen, T. (1996): Wavelets and Filter Banks, Wellesley, MA: Wellesley-Cambridge Press.MATHGoogle Scholar
  17. Tong, H. (1990): Non Linear Time Series, Oxford: Clarendon Press.MATHGoogle Scholar
  18. Wickerhauser, M.V. (1994): Adapted Wavelet Analysis from Theory to Practice, Wellesley, MA: A.K. Peters.Google Scholar

Copyright information

© Springer Japan 1998

Authors and Affiliations

  • Fionn Murtagh
    • 1
  • Alexandre Aussem
    • 2
  1. 1.Faculty of InformaticsUniversity of Ulster Magee CollegeLondonderryIreland
  2. 2.Clermont-Ferrand II ISIMA, Campus des CezeauxUniversité Blaise PascalAubière CedexFrance

Personalised recommendations