Advertisement

The SODAS Project: a Software for Symbolic Data Analysis

  • Georges Hébrail
Conference paper
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)

Summary

This paper presents an ESPRIT European project, whose goal is to develop a prototype software for symbolic data analysis. Symbolic data analysis is an extension of standard methods of data analysis (such as clustering, discrimination, or factorial analysis) to more complex data structures, called symbolic objects. After a short presentation of the model of symbolic objects, the different parts of the software are briefly described.

Keywords

Short Presentation Prototype Software Complex Data Structure Symbolic Object Probabilistic Elementary Event 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brito P. (1995): « Symbolic objects: order structure and pyramidal clustering », in Annals of Operations Research,N°55, pp.277–297.Google Scholar
  2. Carvalho F.A.T. (1996): « Extension based proximities between constrained boolean symbolic objects », in Proceedings of the IFCS’96 Conference, Kobe, March 96.Google Scholar
  3. Chavent M. (1995): « Choix de base pour un partitionnement d’objets symboliques », in Actes des Sèmes Rencontres de la Société Francophone de Classification (SFC-95), Namur, Sept. 95.Google Scholar
  4. Chouakria A., Cazes P., Diday E. (1995): « Extension de l’analyse factorielle des correspondances multiples à des données de type intervalle et de type ensemble » in Actes des 3 èmeS Rencontres de la Société Francophone de Classification (SFC-95), Namur, Sept. 95.Google Scholar
  5. Diday E. (1991): « Des objets de l’analyse des données à ceux de l’analyse des connaissances », in Induction Symbolique et Numérique à partir de Données, Editeurs Y.Kodratoff et E.Diday. Cépadués-Editions.Google Scholar
  6. Granville V., Rasson J.P. (1995): « Multivariate discriminant analysis and maximum penalized likelihood density estimation », Journal of Royal Statistical Society, Series B. 57, pp. 501–517.Google Scholar
  7. Hébrail G. (1995): « L’analyse de données symboliques: état de l’art et perspectives », EDF-DER Research report n°HI-23!95–018.Google Scholar
  8. Ichino M. (1994): « Generalised Minkowski metrics for mixed features type data analysis », in IEEE Transactions on System, Man, and Cybernetics,24, 4, pp. 698–708.Google Scholar
  9. Lebbe J., Vignes R. (1991): « Génération de graphes d’identification à partir de descriptions de concepts », in Induction Symbolique et Numérique à partir de Données, Editeurs Y.Kodratoff et E.Diday, Cépaduès Editions.Google Scholar
  10. Tong H.T.T., Summa M.,. Périnel E., Ferraris J. (1996): « Generating symbolic descriptions for classes », in Proceedings of the IFCS ‘86 Conference, Kobe, March 96.Google Scholar
  11. SODAS Project (1995): Answer to the DOSIS Call for Proposals.Google Scholar

Copyright information

© Springer Japan 1998

Authors and Affiliations

  • Georges Hébrail
    • 1
  1. 1.Electricite De France - Research CenterClamart CedexFrance

Personalised recommendations