Skip to main content

Recent Advances in Transgenic Fish Technology

  • Chapter
Aquatic Genomics

Summary

Organisms into which foreign DNA (transgene) have been artificially introduced and integrated in their genomes are called transgenic organisms. Since the mid 1980s, many species of transgenic fish have been produced by introducing desired foreign DNA into unfertilized or newly fertilized eggs by microinjection or electroporation. More recently, transgenic finfish, shellfish and crustaceans have also been produced by infecting newly fertilized eggs or the immature gonads with replication-defective pantropic retroviral vectors carrying the desired foreign DNA. These transgenic fish serve as excellent experimental models for basic scientific investigations as well as biotechnological applications. In this paper, we will review the current status of the transgenic fish technology and its potential application in producing disease resistant fish strains via manipulation of anti-microbial peptide genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bechinger, B (1997) Structure and functions of channel-forming peptides: magainins, cecropins, melittin and alamethicin. J Membr. Biol. ( UNITED STATES ) 156: 197–211

    Google Scholar 

  • Boman, HG, Faye, I, Gudmundsson, GH, Lee, JY and Lindholm, DA (1991) Cell-free immunity in Cecropia. Eur. J. Biochem. 201: 23–31

    Google Scholar 

  • Boman, HG (1994) Cecropins: Antibacterial peptides from insects and pigs. In Hoffmann, JA, Janeway, CA and Natori, S (Eds) Phylogenetic Perspectives in Immunityt: The Insect Host Defence pp 3–17

    Google Scholar 

  • Boman, HG (1995) Peptide antibiotics and their role in innate immunity. Annu. Rev. Immuno1. 13: 61–92

    Article  CAS  Google Scholar 

  • Burns, JC, Friedmann T, Driever, W, Burrascano, M and Yee, JK (1993) Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc. Natl. Acad. Sci. USA 90: 8033–8037

    Google Scholar 

  • Burns, JC, Matsubara, T, Lozinski, G, Yee, JK, Friedmann, T, Washabaugh, C H and Tsonis, Panagiotis (1994) Pantropic retroviral vector-mediated gene transfer, integration, and expression in cultured newt limb cells. Dev. Biol. 165: 285–289

    Google Scholar 

  • Chomczynski, P, and Sacchi, N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry 162: 156–159

    Article  PubMed  CAS  Google Scholar 

  • Chen, TT and Powers, DA (1990) Transgenic fish. Trends in Biotechnol. 8: 209–215

    Article  CAS  Google Scholar 

  • Chen, TT Lu, J-K. and Kight, K. 1995. Transgenic fish. In: “Molecular Biology and Biotechnology” (ed by Meyers, R.A. ), VCH Publishers, Inc. pp 910–914

    Google Scholar 

  • Chen, T.T., Lu, J-K, Shamblott, MJ, Cheng, CM, Lin, C.-M., Burns J.C, Reimschuessel, R, Chatakondi, N and Dunham, RA (1996) Transgenic Fish: Ideal Models for Basic Research and Biotechnological Applications. In Ferrairs, Joan D. and Palumbi, Stephen R (Eds) Molecular Zoolology.: Advances, Strategies, and Protocols, Wiley-Liss, pp. 401–433

    Google Scholar 

  • Chen, TT, Vrolijk, NH, Lu, JK, Lin, CM, Reinschuessel, R and Dunhasm, RA (1996) Transgenic fish and its application in basic and applied research. Biotechnol. Ann. Rev. 2: 205–236

    Google Scholar 

  • Chen, TT, Lu, J-K and Fahs II, Richard (1998) Transgenic fish technology and its application in fish production. In: Altman, A (Ed) Agricultural Biotechnology, Marcel Dekker, Inc. pp. 527–547

    Google Scholar 

  • Fjalestad, KT, Gjedrem, T and Gjerde, B (1993) Genetic Improvement of Disease Resistance in Fish: an Overview. Aquaculture. 111: 65–74

    Article  Google Scholar 

  • Fletcher, GL and Davis. PL (1991) Transgenic fish for aquaculture. In: Setlow, JK (Ed) Genetic Engineering. Plenum Press, New York, 13: 331–370

    Google Scholar 

  • Ganz, T (1999) Defensins and Host defense. Science. 286: 420–421

    Article  PubMed  CAS  Google Scholar 

  • Gordon, J.W. (1989) Transgenic animals. Intl. Rev. Cytol. 155: 171–229

    Google Scholar 

  • Hackett, PB (1993) The molecular biology of transgenic fish. In Hochachka, P and Mommsen, T (Eds) Biochemiostry and Molecular Biology of Fish, Elsevier Science Publishers B.V., 2: 207–240

    Google Scholar 

  • Hassan, M, Sinden, SL, Kobayashi, RS, Nordeen, RO, Owens, LD (1993) Transformation of potato ( Solanum tuberosum) with a gene for an antibacterial protein, cecropin. Acta Horticulturae. 336: 127–131

    Google Scholar 

  • Inglis, V and Hendrie, MS (1993) Pseudomonas and Alteromonas Infections. In Inglis, V, Roberts, R and Bromage, NR (Eds) Bacterial Diseases of Fish. Halsted Press, New York pp. 167–169

    Google Scholar 

  • Jia, SR, Xie, Y, Tang, T, Feng, LX, Cao, DS, Zhao, YL, Yuan, J, Bai, YY, Jiang, CX, and Jaynes, JM (1993) Genetic engineering of Chinese potato cultivars by introducing antibacterial polypeptide gene. Current Plant Science andJaenisch, R (1990) Transgenic animals. Science 240: 1468–1477

    Google Scholar 

  • Kadono-Okuda, K, Taniai, K, Kato, Y, Kotani, E, Yamakawa, M (1995) Effects of synthetic Bombyx mori cecropin B on the growth of plant pathogenic bacteria. J Invertebr Pathol (UNITED STATES) 65: 309–310

    Article  CAS  Google Scholar 

  • Lin, S, Gaiano, N, Culp, P, Burns, JC, Friedmann, T, Yee, JK and Hopkins, N (1994) Integration and germ-line transmission of a pseudotyped retroviral vector in zebrafish. Science 265: 666–668.

    Article  PubMed  CAS  Google Scholar 

  • Lu, JK, Chen, TT, Allen, SK, Matsubara, T and Burns, JC (1996) Production of transgenic dwarf surfclams, Mulina lateralis, with pantropic retroviral vectors. Proc. Natl. Acad. Sci. USA 93: 3482–3486

    Google Scholar 

  • Lu JK, Burns, JC and Chen, TT (1997) Pantropic retroviral vector integration, expression, and germline transmission in medaka (Oryzias latipes). Mol. Mar. Biol. Biotech. 6: 289–95

    Google Scholar 

  • Matsubara, T, Beeman, RW, Shike, H, Besansky, NJ, Mukabayire, O, Higgs, S, James, A, and Burns, JC (1996) Pantropic retroviral vectors integrate and express in cells of the malaria mosquito, Anopheles gambiae. Proc. Natl. Acad. Sci. USA 94: 6181–6189

    Google Scholar 

  • Merrifield, EL, Mitchell, SA, Ubach, J, Boman, HG, Andreu, D, Merrifield, RB (1995) D-enantiomers of 15-residue cecropin A-melittin hybrids. Int J Pept. Protein Res. ( DENMARK ) 46: 214–220

    Google Scholar 

  • Miyanohara, A, Elam, RL, Witztum, JL and Friedmann, T (1992) Efficient in vivo transduction of the neonatal mouse liver with pseudotyped retroviral vectors. New Biol. 4: 261–267

    PubMed  CAS  Google Scholar 

  • Morizot, DC, Schultz, RJ and Wells, RS (1990) Assignment of six enzyme loci to multipoint linkage groups in fishes of the genus Poeciliopsis (Poeciliidae): designation of linkage groups III-V. Biochemical Genetics 28: 83–95

    Article  PubMed  CAS  Google Scholar 

  • Post, G (1987) Textbook of Fish Health.T.F.H. Publications, Inc. Neptune City, New Jersey, pp. 288

    Google Scholar 

  • Rodriguez, MC, Zamudio, F, Torres, JA, Gonzalez-Ceron, L, Possani, LD, Rodriguez, MH (1995) Effect of a cecropin-like synthetic peptide (Shiva-3) on the sporogonic development of Plasmodium berghei. Exp Parasitol (UNITED STATES) 80: 596–604

    Article  CAS  Google Scholar 

  • Sambrook, J, Fritsch, E and Maniatis, T 1989. Molecular Clonning: A Laboratory Manual, 2“d ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Thune, RL, Stanley, LA and Cooper, RK (1993) Pathogenesis of Gram-Negative Bacterial Infections in Warmwater Fish. Annual Rev. Fish Diseases 37–68

    Google Scholar 

  • Vunnam, S, Juvvadi, P, Merrifield, RB (1997) Synthesis and antibacterial action of cecropin and proline-arginine-rich peptides from pig intestine. J Pept. Res. ( DENMARK ) 49: 59–66

    Google Scholar 

  • Yee, JK, Miyanohara, A, LaPorte, P, Bouic, K, Burns, JC and Friedmann, T (1994) A general method for the generation of high-titer, pantropic retroviral vectors: highly efficient infection of primary hepatocytes. Proc. Natl. Acad. Sci. USA 91: 9564–9568

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Japan

About this chapter

Cite this chapter

Chen, T.T., Sarmasik, A., Chun, C.Z., Lu, J.K., Chiou, P. (2003). Recent Advances in Transgenic Fish Technology. In: Shimizu, N., Aoki, T., Hirono, I., Takashima, F. (eds) Aquatic Genomics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-65938-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-65938-9_34

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-65940-2

  • Online ISBN: 978-4-431-65938-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics