Skip to main content

Generation of living color transgenic zebrafish

  • Chapter
Aquatic Genomics

Summary

Use of green fluorescent protein (gfp) as a reporter gene is a powerful approach for the investigation of tissue-specific gene expression and cellular localization of proteins because the fluorescence of its protein product can be conveniently detected in living cells without supplementing a substrate. The approach is particularly useful in zebrafish because of the transparency and external development of their embryos. In the past few years, using several zebrafish tissue-specific promoters, we have developed several stable lines of gfp transgenic zebrafish that display green fluorescence in different tissues; these include five transgenic lines under an epidermis-specific keratin8 (krt8) promoter, two transgenic lines under a fast skeletal muscle-specific promoter from the myosin light polypeptide 2 (mylz2) gene, and five transgenic lines under an elastaseA (elaA) promoter that is specifically expressed in pancreatic exocrine cells. In all cases, transgenic GFP is faithfully expressed according to the specificity of the promoters used. These gfp transgenic lines are useful for recapitulation of a gene expression program, investigation of tissue and organ development, cell sorting for in vitro cell culture, and construction of cell type-specific cDNA library. Recently, by using two tissue-specific promoters linked to two different reporter genes, gfp and rfp (red fluorescent protein), we have generated two-color transgenic zebrafish that express GFP in skin epidermis and RFP in fast skeletal muscle. Currently, we are also developing gfp transgenic fish for biomonitoring using selected inducible gene promoters that can respond to heavy metals and estrogenic compounds. Thus, generation of living color transgenic zebrafish will have important applications in biotechnology as well as in developmental biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amsterdam A, Lin S, Hopkins N (1995) The Aequorea victoria green fluorescent protein can be used as a reporter in live zebrafish embryos. Dev Biol. 171: 123–129

    Article  PubMed  CAS  Google Scholar 

  • Amsterdam A, Burgess S, Golling G, Chen W, Sun Z, Townsend K, Farrington S, Haldi M, Hopkins N (1999) A large-scale insertional mutagenesis screen in zebrafish. Genes Dev. 13: 2713–2724

    Article  PubMed  CAS  Google Scholar 

  • Devoto SH, Melancon E, Eisen JS, Westerfield M (1996) Identification of separate slow and fast muscle precursor cells in vivo, prior to somite formation. Development 122: 3371–3380

    PubMed  CAS  Google Scholar 

  • Driever W, Solnica-Krezel L, Schier AF, Neuhauss SC, Malicki J, Stemple DL, Stainier DY, Zwartkruis F, Abdelilah S, Rangini Z, Belak J, Boggs C (1996) A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123: 37–46

    PubMed  CAS  Google Scholar 

  • Gong Z (1999). Zebrafish expressed sequence tags and their applications. Methods Cell Biol. 60: 213–233

    Article  PubMed  CAS  Google Scholar 

  • Gong Z, Yan T, Liao J, Lee SE, He J, Hew CL (1997). Rapid identification and isolation of zebrafish cDNA clones. Gene 201: 87–98

    Article  PubMed  CAS  Google Scholar 

  • Haffter P, Granato M, Brand M, Mullins MC, Hammerschmidt M, Kane DA, Odenthal J, van Eeden FJ, Jiang YJ, Heisenberg CP, Kelsh RN, Furutani-Seiki M, Vogelsang E, Beuchle D, Schach U, Fabian C, Nusslein-Volhard C (1996) The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123: 1–36

    PubMed  CAS  Google Scholar 

  • Halloran MC, Sato-Maeda M, Warren JT, Su F, Lele Z, Krone PH, Kuwada JY, Shoji W (2000) Laser-induced gene expression in specific cells of transgenic zebrafish. Development 127: 1953–1960

    PubMed  CAS  Google Scholar 

  • Higashijimas S, Okamoto H, Ueno N, Hotta Y, Eguchi G (1997) High-frequency generation of transgenic zebrafish which reliably express GFP in whole muscles or the whole body by using promoters of zebrafish origin. Dev Biol 192: 289–299

    Article  Google Scholar 

  • Higashijimas S, Hotta Y, Okamoto H (2000) Visualization of cranial motor neurons in live transgenic zebrafish expressing green fluorescent protein under the control of the islet-1 promoter/enhancer. J Neurosci 20: 206–218

    Google Scholar 

  • Ju B, Xu Y, He J. Liao J, Yan T, Hew CL, Lam TJ, Gong Z (1999) Faithful expression of green fluorescent protein ( GFP) in transgenic zebrafish embryos under control of zebrafish gene promoters. Dev Genet 25: 158–167

    Article  PubMed  CAS  Google Scholar 

  • Liao J, Chan CH, Gong Z (1997) An alternative linker-mediated polymerase chain reaction method using a dideoxynucleotide to reduce amplification background. Anal Biochem 253: 137–139

    Article  PubMed  CAS  Google Scholar 

  • Long Q, Meng A, Wang H, Jessen JR, Farrell MJ, Lin S (1997) GATA-1 expression pattern can be recapitulated in living transgenic zebrafish using GFP reporter gene. Development 124: 4105–4111

    PubMed  CAS  Google Scholar 

  • Matz MV, Fradkov AF, Labas YA, Savitsky AP, Zaraisky AG, Markelov ML, Lukyanov SA (1999) Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotech 17: 969–973

    Article  CAS  Google Scholar 

  • Moss JB, Price AL, Raz E, Driever W, Rosenthal N (1996) Green fluorescent protein marks skeletal muscle in murine cell lines and zebrafish. Gene 173: 89–98

    Article  PubMed  CAS  Google Scholar 

  • Prasher DC, Eckenrode G, Ward WW, Prendergrast EG, Cornmier MJ (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111: 229–233

    Article  PubMed  CAS  Google Scholar 

  • Stuart GW, McMurray JV, Westerfield M (1988) Replication, integration and stable germ-line transmission of foreign sequences injected into early zebrafish embryos. Development 103: 403–412

    PubMed  CAS  Google Scholar 

  • Westerfield M, Wegner J, Jeealian BG, DeRobertis EM, Puschel AW (1992) Specific activation of mammalian Hox promoters in mosaic transgenic zebrafish. Genes Dev. 6: 591–598

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, He J, Tian HL, Chan CH, Liao J, Yan T, Lam TJ, Gong Z (1999) Fast skeletal muscle-specific expression of a zebrafish myosin light chain 2 gene and characterization of its promoter by direct injection into skeletal muscle. DNA Cell Biol 18: 85–95

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, He J, Wane X, Lim TM, Gong Z (2000) Asynchronous activation of 10 muscle- specific protein ( MSP) genes during zebrafish somitogenesis. Dev Dyn 219: 201–215

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Japan

About this chapter

Cite this chapter

Gong, Z., Wan, H., Ju, B., He, J., Wang, X., Yan, T. (2003). Generation of living color transgenic zebrafish. In: Shimizu, N., Aoki, T., Hirono, I., Takashima, F. (eds) Aquatic Genomics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-65938-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-65938-9_30

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-65940-2

  • Online ISBN: 978-4-431-65938-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics