Skip to main content

Survey of Hox genes in the skate, Raja egalanteria

  • Chapter
Aquatic Genomics

Summary

It is postulated that gene duplications potentiate the acquisition of morphological innovations. Duplication of the Hox gene clusters has been implicated in the evolution of diverse vertebrate body plans. Information on the number and organization of Hox gene clusters from selected vertebrate clades is essential for a better understanding of the role of Hox gene clusters in the vertebrate radiation. We have cloned homeobox sequences by PCR survey from the skate (Raja egalanteria). Clones were assigned to specific Hox cognate groups (vertical paralogs) on the basis of nucleotide and derived amino acid sequence. One hundred eighty two clones were examined and assigned to 25 cognate groups. Analysis of the dataset indicates the presence of multiple Hox clusters in this species. The precise Hox cluster number cannot be determined by this analytical approach, but three or more clusters are indicated provisionally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amores A, Force A, Yan YL, Joly L, Amemiya C, Fritz A, Ho RK, Langeland J, Prince V, Wang YL, Westerfield M, Ekker M, and Postlethwait JH (1998) Zebrafish hox clusters and vertebrate genome evolution. Science 282: 1711–1714

    Article  PubMed  CAS  Google Scholar 

  • Bartels J L, Murtha MT, Ruddle FH (1993) Multiple Hox/HOM-class homeoboxes in Platyhelminthes. Mol Phylogenet Evol 2: 143–151

    Article  PubMed  CAS  Google Scholar 

  • De Rosa R, Grenier JK, Andreeva T, Cook CE, Adoutte A, Akam M, Carroll SB, Balavoine G (1999) Hox genes in brachi opods and priapulids and protostome evolution. Nature 399: 772–776

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Fernandez J, Holland PW (1994) Archetypical organization of the amphioxus Hox gene cluster. Nature 370: 563–566

    Article  PubMed  CAS  Google Scholar 

  • Holland PW, Garcia-Fernandez J, Williams NA, Sidow A (1994) Gene duplications and the origins of vertebrate development. Dey Suppl 125–133

    Google Scholar 

  • Kim CB, Amemiya C, Bailey W, Kawasaki K, Mezey J, Miller W, Minoshima S, Shimizu N, Wagner G, Ruddle F (2000) Hox cluster genomics in the horn shark, Heterodontus francisci. Proc Natl Acad Sci USA 97: 1655–1660

    Article  PubMed  CAS  Google Scholar 

  • Martinez P, Rast JP., Arenas-Mena C, Davidson EH (1999) Organization of an echinoderm Hox gene cluster. Proc Natl Acad Sci USA 96: 1469–1474

    Article  PubMed  CAS  Google Scholar 

  • Misof BY, Wagner GP (1994) Evidence for four Hox clusters in the killifish Fundulus heteroclitus ( Teleostei ). Mol Phylogenet Evol 5: 309–322

    Google Scholar 

  • Murtha MT, Leckman JF, Ruddle FH (1991) Detection of homeobox genes in development and evolution. Proc Natl Acad Sci USA 88: 10711–10715

    Article  PubMed  CAS  Google Scholar 

  • Pendleton JW, Nagai BK, Murtha MT, Ruddle FH (1993) Expansion of the Hox genefamily and the evolution of chordates. Proc Natl Acad Sci USA 90: 6300–6304.

    Article  PubMed  CAS  Google Scholar 

  • Ruddle FH (1997) Vertebrate genome evolution. The decade ahead. Genomics 46: 171–173.

    Article  PubMed  CAS  Google Scholar 

  • Ruddle FH, Amemiya CT, Carr JL, Kim CB, Ledje C, Shashikant CS, Wagner GP (1999) Evolution of chordate hox gene cluster. Ann N Y Acad Sci 18: 238–248.

    Article  Google Scholar 

  • Ruddle FH, Bentley KL, Murtha MT, Risch N (1994) Gene loss and gain in the evolution of the vertebrates. Dev Suppl 155–161.

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning. A Laboratory Manual. Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Sharman AC, Holland PW (1998) Estimation of Hox gene cluster number in lampreys. Int J Dev Biol 42: 617–620.

    PubMed  CAS  Google Scholar 

  • Swofford D (1998) PAUP*. Phylogenetic Analysis Using Parsimony (* and Other Methods). Version4. 0. Sinauer, Sunderland, MA.

    Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustaIX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24: 4876–4882.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Japan

About this chapter

Cite this chapter

Kim, C.B., Weiss, D., Ruddle, F. (2003). Survey of Hox genes in the skate, Raja egalanteria . In: Shimizu, N., Aoki, T., Hirono, I., Takashima, F. (eds) Aquatic Genomics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-65938-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-65938-9_12

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-65940-2

  • Online ISBN: 978-4-431-65938-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics