Skip to main content

The Regulation of Dorsiventral Symmetry in Plants

  • Chapter
The Biology of Biodiversity

Abstract

The higher plant shoots are generally radially symmetrical; leaves produced at the shoot apex are dorsiventral while axillary shoots again show radial symmetry. Recently analyzed mutants in different plants indicate that the proper definition of adaxial and abaxial identities is necessary to generate a leaf margin and dorsiventral symmetry, Two genes important in the regulation of transsectional leaf symmetry are PHANTASTICA (a MYB (Myeloblastosis oncogene)-domain transcription factor) and KNOTTED1-like genes (homeodomain transcription factors). We review these results in light of hypotheses about the evolutionary origin of leaves and discuss similarities of mutant phenotypes to unifacial leaves occurring in extant taxa. Related symmetry phenomena of flattened shoots and parallels to the acquisition of dorsal and ventral identities in Drosophila wing imaginal discs are pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baum H (1952) Normale und inverse Unifazialität an den Laubblättern von Codiaeurn variegatum. Oester Bot Zh 95:421–451

    Article  Google Scholar 

  • Beck CB (1976) Current status of the Progymnospermopsida. Rev Palaeobot Palynol 21:523

    Article  Google Scholar 

  • Beck CB (1981) Archaeopteris and its role in vascular plant evolution. In: Niklas KJ (Ed) Paleobotany, paleoecology, and evolution. vol. 1. Praeger, New York, pp 193–230

    Google Scholar 

  • Bohmert K, Camus I, Bellini C, Bouchez D, Caboche M, Benning C (1998) AGO1 defines a novel locus of Arabidopsis controlling leaf development. EMBO J 17:170–180

    Article  PubMed  CAS  Google Scholar 

  • Bower FO (1935) Primitive land plants. Macmillan, London

    Google Scholar 

  • Chen J-J, Janssen BJ, Williams A, Sinha N (1997) A gene fusion at a homeobox locus: alteration in leaf shape and implications for morphological evolution. Plant Cell 9:1289–1304

    PubMed  CAS  Google Scholar 

  • Coen ES, Nugent JM (1994) Evolution of flowers and inflorescences. Development (Suppl. 1994):107–116

    Google Scholar 

  • Cohen B, McGuffin M, Pfeifle C, Segal D, Cohen S (1992) Apterous: a gene required for imaginal disk development in Drosophila encodes a member of the LIM family of developmental regulatory proteins. Genes Dev 6:715–729

    Article  PubMed  CAS  Google Scholar 

  • Cooney-Sovetts C, Sattler R (1986) Phylloclade development in the Asparagaceae: an example of homeosis. Bot J Linnean Soc 94:327–372

    Article  Google Scholar 

  • Cutter EG (1958) Studies on morphogenesis in Nymphaeaceae. Phytomorphology 8:74–95

    Google Scholar 

  • Eberwein RK (1995) Bau and Ontogenese unkonventioneller Blatter des Typs `unifaziale Phyllome’ und deren Beitrag zur Theorie des Spermatophytenblattes. Diss. RWTH Aachen

    Google Scholar 

  • Fleming A, McQueen-Mason S, Mandel T, Kuhlemeier C (1997) Induction of leaf primordia by the cell wall protein expansin. Science 276:1415–1418

    Article  CAS  Google Scholar 

  • Florin R (1950) Upper Carboniferous and Lower Permian conifers. Bot Rev 16:258–282

    Article  Google Scholar 

  • Florin R (1951) Evolution in cordaites and conifers. Acta Horti Bergiani 15:285–388

    Google Scholar 

  • Gifford EM, Foster AS (1989) Morphology and evolution of vascular plants. WH Freeman, New York

    Google Scholar 

  • Goebel K (1905) Organography of plants. Part 2. Clarendon, Oxford

    Google Scholar 

  • Goebel K (1928) Organographie der Pflanzen. Erster Teil. 3rd ed. Fischer, Jena

    Google Scholar 

  • Hagemann W (1970) Studien zur Entwicklungsgeschichte der Angiospermenblätter. Ein Beitrag zur Klarung ihres Gestaltungsprinzips. Bot Jahrb 90:297–413

    Google Scholar 

  • Hagemann W (1976) Sind Fame Kormophyten? Eine Alternative zur Telomtheorie. Plant Syst Evol 124:251–277

    Article  Google Scholar 

  • Hagemann W, Gleissberg S (1996) Organogenetic capacity of leaves: the significance of marginal blastozones in angiosperms. Plant Syst Evol 199:121–152

    Article  Google Scholar 

  • Hanawa J (1961) Experimental studies of leaf dorsiventrality in Sesamum indicum L. Bot Mag Tokyo 74:303–309

    Google Scholar 

  • Hareven D, Gutfinger T, Parnis A, Eshed Y, Lifschitz, EM (1996) The making of a compound leaf: genetic manipulation of leaf architecture in tomato. Cell 84:735–744

    Article  PubMed  CAS  Google Scholar 

  • Hirsch AM (1977) A developmental study of the phylloclades of Ruscus aculeatus L. Bot J Linnean Soc 74:355–365

    Article  Google Scholar 

  • Jackson D, Veit B, Hake S (1994) Expression of maize KNOTTED 1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development 120:405–413

    CAS  Google Scholar 

  • Janssen B, Lund L, Sinha N (1998) Overexpression of a homeobox gene, LeT6, reveals indeterminate features in the tomato compound leaf. Plant Physiol 117:771–786

    Article  PubMed  CAS  Google Scholar 

  • Kaplan DR (1970a) Comparative development and morphological interpretation of “rachisleaves” in Umbelliferae. Bot J Linnean Soc 63 (Suppl 1):101–125

    Google Scholar 

  • Kaplan DR (1970b) Comparative foliar histogenesis in Acorns calamus and its bearing on the phyllode theory of monocotyledonous leaves. Am J Bot 57:331–361

    Article  Google Scholar 

  • Kaplan DR (1975) Comparative developmental evaluation of the morphology of unifacial leaves in the monocotyledons. Bot Jahrb Syst 95:1–105

    Google Scholar 

  • Kaplan DR (1980) Heteroblastic leaf development in Acacia. Morphological and morphogenetic implications. La Cellule 73:137–196

    Google Scholar 

  • Kaussmann B (1955) Histogenetische Untersuchungen zum Flachsprossproblem. Bot Studien 3:1–136

    Google Scholar 

  • Klein T, Arias M (1998) Interaction among Delta, Serrate and Fringe modulate Notch activity during Drosophila wing development. Development 125:2951–2962

    PubMed  CAS  Google Scholar 

  • Kunze H (1985) Studien zur Blattmetamorphose. Beitr Biol Pflanzen 61:49–77

    Google Scholar 

  • Luo D, Carpenter R, Vincent C, Copsey L, Coen E (1996) Origin of floral asymmetry in Antirrhinum. Nature 384:794–799

    Article  Google Scholar 

  • McConnell JR, Barton MK (1998) Leaf polarity and meristem formation in Arabidopsis. Development 125:2935–2942

    PubMed  CAS  Google Scholar 

  • McHale N (1992) A nuclear mutation blocking initiation of the lamina in leaves of Nicotiana sylvestris. Planta 186:355–360

    Article  CAS  Google Scholar 

  • McHale N (1993) LAM-1 and FAT genes control development of the leaf blade in Nicotiana sylvestris. Plant Cell 5:1029–1038

    PubMed  Google Scholar 

  • Medard R (1988) La dorsoventralite initiale de l’ebauche foliaire du Manihot esculenta. Can J Bot 66:273–2284

    Google Scholar 

  • Napp-Zinn K (1973) Anatomie des Blattes. 2.A. Entwicklungsgeschichtliche and topographische Anatomie des Angiospermenblattes. In: Zimmermann W (Ed) Handbuch der Pflanzenanatomie. 2. Auflage Bd 8. T 1–2. Gebruder Borntrager, Berlin

    Google Scholar 

  • Neumann CJ, Cohen SM (1996) A hierarchy of cross-regulation involving Notch, wingless, vestigial and cut organizes the dorsal-ventral axis of the Drosophila wing. Development 122:3477–3485

    PubMed  CAS  Google Scholar 

  • Neumann CJ, Cohen SM (1998) Boundary formation in Drosophila wing: Notch activity attenuated by the POU protein Nubbin. Science 281:409–413

    Article  PubMed  CAS  Google Scholar 

  • Ogura Y (1972) Comparative anatomy of vegetative organs of the pteridophytes. Gebruder Borntrager, Berlin

    Google Scholar 

  • Pannin VM, Papayannopoulos V, Wilson R, Irvine KD (1997) fringe modulates Notch ligand interactions. Nature 387:908–912

    Article  Google Scholar 

  • Roth I (1949) Zur Entwicklungsgeschichte des Blattes, mit besonderer Berücksichtigung von Stipular- und Ligularbildungen. Planta 37:299–336

    Article  Google Scholar 

  • Running M, Meyerowitz E (1996) Mutation in the PERIANTHIA gene of Arabidopsis specifically alter floral organ number and initiation pattern. Development 122:1261–1269

    PubMed  CAS  Google Scholar 

  • Sattler R (1998) On the origin of symmetry, branching and phyllotaxis in land plants. In: Jean RV, Barabé D (Eds) Symmetry in plants. World Scientific, Singapore, pp 775–793

    Chapter  Google Scholar 

  • Schneeberger R, Tsianti M, Freeling M, Langdale J (1998) The rough sheath2 gene negatively regulates homeobox gene expression during maize leaf development. Development 125:2857–2865

    PubMed  CAS  Google Scholar 

  • Sinha NR, Williams RE, Hake S (1993) Overexpression of the maize homeobox gene, KNOTTED-1, causes a switch from determinate to indeterminate cell fates. Genes Dev 7:787–795

    Article  PubMed  CAS  Google Scholar 

  • Smith L, Green B, Veit B, Hake S (1992) A dominant mutation in the maize homeobox gene, KNOTTED-1, causes its ectopic expression in leaf cells with altered fates. Development 116:21–30

    PubMed  CAS  Google Scholar 

  • Steeves TA, Sussex IM (1989) Patterns in plant development. 2nd ed., Cambridge Univ Press, Cambridge

    Book  Google Scholar 

  • Stewart WN, Rothwell GW (1993) Paleobotany and the evolution of plants. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Sussex I (1955) Morphogenesis in Solanum tuberosum L. Apical structure and developmental pattern of the juvenile shoot. Phytomorphology 5:253–273

    Google Scholar 

  • Tamaoki M, Sato Y, Matsuoka M (1997) Dorsoventral pattern formation of tobacco leaf involves spatial expression of a tobacco homeobox gene, NTH15. Genes Gen 72:1–8

    CAS  Google Scholar 

  • Thielke C (1948) Beiträge zur Entwicklungsgeschichte unifazialer Blätter. Planta 36:154–177

    Article  Google Scholar 

  • Timmermans MCP, Schultes NP, Jankovsky, JP, Nelson T (1998) Leafbladelessl is required for dorsoventrality of lateral organs in maize. Development 125:2813–2823

    PubMed  CAS  Google Scholar 

  • Troll W (1937) Vergleichende Morphologie der höheren Pflanzen. Bd I, 1. Gebrüder Borntrager, Berlin

    Google Scholar 

  • Troll, W. (1939) Vergleichende Morphologie der höheren Pflanzen. Bd I, 2. Gebrüder Borntrager, Berlin

    Google Scholar 

  • Troll W, Meyer HJ (1955) Entwicklungsgeschichtliche Untersuchungen über das Zustandekommen unifazialer Blattstrukturen. Planta 46:286–360

    Article  Google Scholar 

  • Waites R, Hudson A (1995) phantastica: a gene required for dorsoventrality of leaves in Antirrhinum majus. Development 121:2143–2154

    CAS  Google Scholar 

  • Waites R, Selvadurai, HRN, Oliver IR, Hudson A (1998) The PHANTASTICA gene encodes a MYB transcription factor involved in growth and dorsoventrality of lateral organs in Antirrhinum. Cell 93:779–789

    Article  PubMed  CAS  Google Scholar 

  • Wardlaw CW (1949) Experiments on organogenesis in ferns. Growth 13 (Suppl):93–131

    Google Scholar 

  • Wardlaw CW (1957) Experimental and analytical studies of Pteridophytes XXXVII. A note on the inception of microphylls and macrophylls. Ann Bot (n.s.) 21:427–437

    Google Scholar 

  • Wardlaw CW (1968) Morphogenesis in plants. Methuen, London

    Google Scholar 

  • Zimmermann W (1965) Die Telomtheorie. Gustav Fischer, Stuttgart

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Gleissberg, S., Kim, M., Jernstedt, J., Sinha, N. (2000). The Regulation of Dorsiventral Symmetry in Plants. In: Kato, M. (eds) The Biology of Biodiversity. Springer, Tokyo. https://doi.org/10.1007/978-4-431-65930-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-65930-3_15

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-65932-7

  • Online ISBN: 978-4-431-65930-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics