Bioprobes pp 67-96 | Cite as


  • Masaya Imoto


Apoptosis is a morphologically distinct form of programmed cell death that plays a major role during development, homeostasis, and in many diseases including cancer, acquired immunodeficiency syndrome, and neurodegenerative disorders. Apoptosis can be triggered by a variety of stimuli including viral infection [1,2], growth factor withdrawal [3–8], and DNA damage resulting from radiation [9–11] and chemotherapeutic drugs [12]. The hallmark signs of apoptosis include chromatin condensation, internucleosomal cleavage of DNA, cell shrinkage and the formation of apoptotic bodies, which are ultimately engulfed by phagocytic cells. Apoptosis occurs through the activation of a cell-intrinsic suicide program. The basic machinery to carry out apoptosis appears to be present in essentially all mammalian cells at all times, but the activation of the suicide program is regulated by many different signals that originate from both the intracellular and the extracellular milieu. A study of the molecular events underlying apoptotic intracellular signalling pathways has, in recent years, resulted in the identification of a large number of molecules that are involved either in promoting or in suppressing the apoptotic response.


Mutant Epidermal Growth Factor Receptor Okadaic Acid Ceramide Synthesis Small Cell Lung Carcinoma Cell A431 Human Epidermoid Carcinoma Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    White E (1993) Regulation of apoptosis by the transforming genes of the DNA tumor virus adenovirus. Proc Sco Exp Biol Med 204:30–39Google Scholar
  2. 2.
    White E, Gooding LR (1994) Regulation of apoptosis by human adenoviruses. In: D. Tomei and F. Cope (eds), Apoptosis: The molecular Basis for Cell Death II, pp 111–141. Cold Spring Harbor, NY: Cold Spring Harbor LaboratoryGoogle Scholar
  3. 3.
    Evan GI, Wylie AH, Gilbert CS, Littlewood T, Land H, Brooks M, Waters CM, Penn LZ, Hancock DC (1992) Induction of apoptosis in fibroblasts by c-myc protein. Cell 69:119–128PubMedCrossRefGoogle Scholar
  4. 4.
    Lin Y, Benchimol S. (1995) Cytokines inhibit p53-mediated apoptosis but not p53mediated GI arrest. Mol Cell Biol 15:6045–6054PubMedGoogle Scholar
  5. 5.
    Rao L, Debbas M, Sabbatini P, Hockenberry D, Korsmeyer S, White E (1992) The adenovirus E1A proteins induce apoptosis which is inhibited by the EIB 19K abd Bcl2 proteins. Proc Natl Acad Sci USA 89:7742–7746PubMedCrossRefGoogle Scholar
  6. 6.
    Sakamuro D, Eviner V, Elliott KJ, Showe L, White E, Prendergast GC (1995) c-Myc induces apoptosis in epithelial cells by both p53-dependent and p53-independent mechanism. Oncogene 11:2411–2418Google Scholar
  7. 7.
    Wagner AJ, Kokontis JM, Hay N (1994) Myc-mediated apoptosis requires wild-type in a manner independent of cell cycle arrest and the ability of p53 to induce p21WAFl/CiPl Genes Dev 8:2817–2830PubMedCrossRefGoogle Scholar
  8. 8.
    Yonish-Rouach E, Resnitzky D, Lotem J, Sachs L, Kimchi A, Oren M (1991) Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 352:345–347PubMedCrossRefGoogle Scholar
  9. 9.
    Clarke AR, Purdie CA, Harrison DJ, Morris RG, Bird CC, Hooper ML, Wyllie AH (1993) Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362:849–852PubMedCrossRefGoogle Scholar
  10. 10.
    Han Z, Chatterjee D, He DM, Early J, Pantazis P, Wyche JH, Hendrickson EA (1995) Evidence for a G2 checkpoint in p53-independent apoptosis induction by X-irradiation. Mol Cell Biol 15:5849–5857PubMedGoogle Scholar
  11. 11.
    Lowe SW, Schmitt EM, Smith SW, Osborn BA, Jacks T (1993) p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362:847–849PubMedCrossRefGoogle Scholar
  12. 12.
    Lowe SW, Ruley HE, Jacks T Houseman DE (1993) p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74:957–967PubMedCrossRefGoogle Scholar
  13. 13.
    Horvits HR, Shahan S, Hengartner MO (1994) The genetics of programmed cell death in the nematode Caenorthabditis elegans. Cold Spring Harb Symp Quant Biol 59:377–385CrossRefGoogle Scholar
  14. 14.
    Yuan JY, Horvitz RH (1990) Genetics mosaic analysis of ced-3 ced-4, two genes that control programmed cell death in the nematode C. elegans. Dev Biol 138:33–41PubMedCrossRefGoogle Scholar
  15. 15.
    Hengartner MO, Ellis RE, Horvitz RH (1992) Caenorhabditis elegans gene ced-9protects cells from programmed cell death. Nature 356:494–499PubMedCrossRefGoogle Scholar
  16. 16.
    Alnemri ES, Fernandes TF, Haldar S, Croce CM, Litwack G (1992) Involvement of BCL-2 in glucocorticoid-induced apoptosis of human pre-B-leukemias. Cancer Res 52:491–495PubMedGoogle Scholar
  17. 17.
    Hengartner MO, Horvitz RH (1994) C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian protooncogene bcl-2. Cell 76:665–676PubMedCrossRefGoogle Scholar
  18. 18.
    White E (1996) Life, death, and the pursuit of apoptosis. Genes Dev 10:1–15PubMedCrossRefGoogle Scholar
  19. 19.
    Raff MC (1992) Social controls on cell survival and cell death. Nature 356:397–400PubMedCrossRefGoogle Scholar
  20. 20.
    Hockenberry D, Nunez G, Milliman CL, Schreiber RD Korsmeyer SJ (1990) BcI-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 377:695–701Google Scholar
  21. 21.
    Vaux DL, Cory S, Adams TM (1988) Bcl-2 promotes the survival of haemopoietic cells and cooperates with c-myc to immortalize pre-B cells. Nature 335:440–412PubMedCrossRefGoogle Scholar
  22. 22.
    Boise LH, Gonzalez-Garcia M, Postema CE, Ding L, Lindsten T, Turka LA, Mao X, Nunez G, Thompson CB (1993) Bcl-X, a Bcl-2-related gene that functions as a dominant regulator of apoptotic death. Cell 74:597–608PubMedCrossRefGoogle Scholar
  23. 23.
    Gibson L, Holmgreen SP, Huang DC, Bernard O, Copeland NG, Jenkins NA, Sutherland GR, Baker E, Adams JM, Cory S (1996) Bcl-W, a novel member of the Bcl-2 family, promotes cell survival. Oncogene 13:665–675PubMedGoogle Scholar
  24. 24.
    Kozopas KM, Yang T, Buchan HL, Zhou P, Craig RW (1993) MCL1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL-2. Proc Natl Acad Sci USA 90:3516–3520PubMedCrossRefGoogle Scholar
  25. 25.
    Oltvai ZN, Milliman CL, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 27:609–619CrossRefGoogle Scholar
  26. 26.
    Chittenden T, Harrington EA, O’Connor R, Flemington C, Lutz RJ, Evan GI, Guild BC (1995) Induction of apoptosis by the Bcl-2 homologue Bak. Nature 374:733–736PubMedCrossRefGoogle Scholar
  27. 27.
    Kiefer MC, Brauer MJ, Powers VC, Wu JJ, Umansky SR, Tomei LD, Barr PJ (1995) Modulation of apoptosis by the widely distributed Bcl-2 homologue Bak. Nature 374:736–739PubMedCrossRefGoogle Scholar
  28. 28.
    Yang E, Zha J, Jackel J, Boise LH, Thompson CB, Korsemeyer SJ (1995) Bad, a heterodimeric partner for Bcl-XL and Bc1–2, displaces Bax and promotes cell death. Cell 80:285–291PubMedCrossRefGoogle Scholar
  29. 29.
    Boyd JM, Gallo GJ, Elangovan B, Houghton AB, Malstrom S, Avery BJ, Ebb RG, Subramanian T, Chittenden T, Lutz RJ (1995) Bik, a novel death-inducing protein shares a distinct sequence motif with Bcl-2 family proteins and interacts with viral and cellular survival proteins. Oncogene 11:1921–1928PubMedGoogle Scholar
  30. 30.
    Han J, Sabbatini P, White E (1996) Induction of apoptosis by human Nbk/Bik, a BH3containing protein that interacts with EIB 19K. Mol Cell Biol 16:5857–5864PubMedGoogle Scholar
  31. 31.
    Wang K, Yin X-M, Chao DT, Milliman CL, Korsmeyer SJ (1996) BID: a novel BH3 domain-only death agonist. Genes Dev 10:2859–2869PubMedCrossRefGoogle Scholar
  32. 32.
    Minn AJ, Boise LH, Thompson CB (1996) Bcl-Xs antagonizes the protective effects of Bcl-XL. J Biol Chem 271:6306–6312PubMedCrossRefGoogle Scholar
  33. 33.
    Chresta CM, Masters JRW, Hickman JA (1996) Hypersensitivity of human testicular tumors to etoposide-induced apoptosis is associated with functional p53 and a high Bax:Bcl-2 ratio. Cancer Res 56:1834–1841PubMedGoogle Scholar
  34. 34.
    Vaux DL (1997) Ced-4-The third horseman of apoptosis. Cell 90:389–390PubMedCrossRefGoogle Scholar
  35. 35.
    Reed JC (1997) Double identity for proteins of the Bcl-2 family. Nature 387:773–776PubMedCrossRefGoogle Scholar
  36. 36.
    Kruck RM, Bossy-Wetzel E, Grren DR (1997) The release of cytochrome c from mitochondria: a primary site for bcl-2 regulation of apoptosis. Science 275:1132–1136CrossRefGoogle Scholar
  37. 37.
    Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng, I-I, Jones DP, Wang, X (1997) Prevention of apoptosis by bcl-2: release of cytochrome c from mitochondria blocked. Science 275:1129–1132PubMedCrossRefGoogle Scholar
  38. 38.
    Yuan J, Shaham S, Ledoux S, Ellis HM, Horvitz HR (1993) The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin 1β-converting enzyme. Cell 75:641–652PubMedCrossRefGoogle Scholar
  39. 39.
    Alnemri ES, Livingston DJ, Nicholson DW, Salvesen G, Thornberry NA, Wong WW, Yuan J (1996) Human ICE/CED-3 protease nomenclature. Cell 87:171PubMedCrossRefGoogle Scholar
  40. 40.
    Nicholson DW (1996) ICE/CED3-like proteases as therapeutic targets for the control of inappropriate apoptosis. Nature Biotech 14:297–301CrossRefGoogle Scholar
  41. 41.
    Salvesen GS and Dixit VM (1997) Caspases: Intracellular signaling by proteolysis. Cell 91:443–446PubMedCrossRefGoogle Scholar
  42. 42.
    Thornberry NA, Rano TA, Peterson EP, Rasper DM, Timkey T, Garcia-Calvo M, Houtzager VM, Nordstrom PA, Roy S, Vaillancourt JP, Chapman KT, Nicholson DW (1997) A combinatorial approach defines specificities of member of the caspase family and granzyme B. J Biol Chem 272:17907–17911PubMedCrossRefGoogle Scholar
  43. 43.
    Talanian RV, Quinlan C, Trautz S, Hackett MC, Mankovich JA, Banach D, Ghayur T, Brady KD, Wong WW (1997) Substrate specificities of caspase family proteases. J Biol Chem 272:9677–9682PubMedCrossRefGoogle Scholar
  44. 44.
    Kaufmann SH, Desnoyers S, Ottaviano Y, Davidson NE, Poirier GG (1993) Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapyinduced apoptosis. Cancer Res 53:3976–3985PubMedGoogle Scholar
  45. 45.
    Kothakota S, Azuma T, Reinhard C, Klippel A, Tang J, Chu K, McGarry TJ, Kirschner MW, Koths K, Kwaitkowski DJ, Williams LT (1997) Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science 278:294–298PubMedCrossRefGoogle Scholar
  46. 46.
    Song Q, Lees-Miller SP, Kumar S, Zhang Z, Chan DW, Smith GC, Jackson SP, Alnemri ES, Litwack G, Khanna KK, Lavin MF (1996) DNA-dependent protein kinase catalytic subunit: a target for an ICE-like protease in apoptosis. EMBO J 15:3238–3246PubMedGoogle Scholar
  47. 47.
    Na S, Chuang T-H, Cunningham A, Turi, TG, Hanke JH, Bokoch GM, Danley DE (1996) D4-GDI, a substrate of CPP32, is proteolyzed during Fas-induced apoptosis. J Biol Chem 271:11209–11213PubMedCrossRefGoogle Scholar
  48. 48.
    Goldberg YP, Nicholson DW, Rasper DM, Kalchman MA, Koide NA, Vaillancourt JP, Hayden MR (1996) Cleavage of huntingtin by apopain, a proapoptotic cysteine protease, is modulated by the polyglutamine tract. Nat Genet 13:442–449PubMedCrossRefGoogle Scholar
  49. 49.
    Ghayur T, Hugunin M, Talanian RV, Ratnofsky S, Quinlan C, Emoto Y, Pandey P, Datta R, Huang Y, Kharbanda S, Allen H, Kamen R, Wong W, Kufe D (1996) Proteolytic activation of protein kinase CS by an ICE/CED 3-like protease induces characteristics of apoptosis. J Exp Med 184:2399–2404PubMedCrossRefGoogle Scholar
  50. 50.
    Datta R, Kojima H, Yoshida K, Kufe D (1997) Caspase-3-mediated cleavage of protein kinase C θ in induction of apoptosis. J Biol Chem 272:20317–20320PubMedCrossRefGoogle Scholar
  51. 51.
    Chen W, Otterson GA, Lipkowitz S, Kheif SN, Coxon AB, Kaye FJ (1997) Apoptosis is associated with cleavage of a 5 kDa fragment from RB which mimics dephosphorylation and modulates E2F binding. Oncogene 14:1243–1248PubMedCrossRefGoogle Scholar
  52. 52.
    Rudel T, Bokoch GM (1997) Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2. Science 276:1571–1574PubMedCrossRefGoogle Scholar
  53. 53.
    Liu X, Zou H, Slaughter C, Wang X (1997) DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89:175–184PubMedCrossRefGoogle Scholar
  54. 54.
    Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S (1998) A caspaseactivated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391:43–50PubMedCrossRefGoogle Scholar
  55. 55.
    Sakahira H, Enari M, Nagata S (1998) Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391:96–99PubMedCrossRefGoogle Scholar
  56. 56.
    Shaham S, Horvitz HR (1996a) Developing Caenorhabditis elegans neurins may contain both cell-death protective and killer activities. Genes Dev 10:578–591PubMedCrossRefGoogle Scholar
  57. 57.
    Shaham S, Horvitz HR (1996b) An alternative spliced C. elegans ced-4 RNA encodes a novel cell death inhibitor. Cell 86:201–208.PubMedCrossRefGoogle Scholar
  58. 58.
    Zou H, Henzel WJ, Liu X, Wang X (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90:405–413PubMedCrossRefGoogle Scholar
  59. 59.
    Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell free extract: requirement for dATP and cytochrome c. Cell 86:147–157PubMedCrossRefGoogle Scholar
  60. 60.
    Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf- 1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489PubMedCrossRefGoogle Scholar
  61. 61.
    Nagata S, Golstein P (1995) The Fas death factor. Science 267:1449–1456PubMedCrossRefGoogle Scholar
  62. 62.
    Smith CA, Farrah T, Goodwin RG (1994) The TNF receptor superfamily of cellular and viral proteins: activation, costimulation and death. Cell 76:959–962PubMedCrossRefGoogle Scholar
  63. 63.
    Segal RA, Greenberg ME (1996) Intracellular signaling pathways activated by neurotrophic factors. Annu Rev Neurosci. 19:463–489PubMedCrossRefGoogle Scholar
  64. 64.
    Stewart CE, Rotwein P (1996) Growth, differentiation, and survival: multiple physiological functions for insulin-like growth factors. Physiol Rev 76:1005–1026PubMedGoogle Scholar
  65. 65.
    Ataliotis P, Mercola M (1997) Distribution and functions of platelet-derived growth factors and their receptors during embryogenesis. Int Rev Cytol 172:95–127PubMedCrossRefGoogle Scholar
  66. 66.
    Evans CA, Oven-Lynch PJ, Whetton AD Dive C (1993) Activation of the Abelson tyrosine kinase activity is associated with suppression of apoptosis in hemapoietic cells. Cancer Res 53:1735–1738PubMedGoogle Scholar
  67. 67.
    McGahon AJ, Nishioka WK, Martin SJ, Mahboubi A, Cotter TG, Green DR (1995) Regulation of the Fas apoptotic cell death pathway by Abl. J Biol Chem 270:22625–22631PubMedCrossRefGoogle Scholar
  68. 68.
    Meydan N, Grunberger T, Dadi H, Shahar M, Arpaia E, Lapidot Z, Leeder JS, Freedman M, Cohen A, Gazit A, Levitzki A, Roifman CM (1996) Inhibition of acute lymphoblastic leukaemia by a Jak-2 inhibitor. Nature 379:645–648PubMedCrossRefGoogle Scholar
  69. 69.
    Umezawa H, Imoto M, Sawa T, Isshiki K, Matsuda N, Uchida T, Iinuma H, Hamada M, Takeuchi T (1986) Studies on a new epidermal growth factor-receptor kinase inhibitor, erbstatin, produced by MH435-hF3. J Antibiot. 39:170–173PubMedCrossRefGoogle Scholar
  70. 70.
    Imoto M, Umezawa K, Sawa T, Takeuchi T, Umezawa H (1987) Insituinhibition of tyrosine protein kinase by erbstatin. Biochem. Int., 15:989–995PubMedGoogle Scholar
  71. 71.
    Imoto M, Nakamura T, Tanaka S, Umezawa K (1994) Inhibition of T cell receptormediated signal transduction by erbstatin. Biosci Biotech Biochem 58:1700–1701CrossRefGoogle Scholar
  72. 72.
    Simizu S, Imoto M, Masuda N, Takada N, Umezawa K (1996) Involvement of hydrogen peroxide production in erbstatin-induced apoptosis in human small lung carcinoma cells. Cancer Res 56:4978–4982PubMedGoogle Scholar
  73. 73.
    Simizu S, Umezawa K, Takada M, Imoto M (1998) Induction of hydrogen peroxide production and Bax expression by CPP32(-like) proteases in tyrosine kinase inhibitorinduced apoptosis in human small cell lung carcinoma cells. Exp Cell Res 238:197–203PubMedCrossRefGoogle Scholar
  74. 74.
    Uehara Y, Hon M, Takeuchi T, Umezawa H (1985) Screening of agents which convert „transformed morphology“ of Rous sarcoma virus-infected rat kidney cells to „normal morphology“: identification of an active agent as herbimycin and its inhibition of intracellular src kinase. Jpn J Cancer Res 76:672–675PubMedGoogle Scholar
  75. 75.
    Fine HA (1994) The basis for current treatment recommendations for malignant gliomas. J Neurooncol 20:111–120PubMedCrossRefGoogle Scholar
  76. 76.
    Feun LG, Savaraj N, Landy HJ (1994) Drug resistance in brain tumors. J Neurooncol 20:165–176PubMedCrossRefGoogle Scholar
  77. 77.
    Nagane M, Huang H-JS, Cavenee WK (1997) Advances in the molecular genetics of gliomas. Curr Opin Oncol 9:215–222PubMedCrossRefGoogle Scholar
  78. 78.
    Furnari FB, Lin H, Huang H-JS, Cavenee WK (1997) Growth suppression of glioma cells by PTEN requires a functional phosphatase catalytic domain. Proc Natl Acad Sci USA 94:12479–12484PubMedCrossRefGoogle Scholar
  79. 79.
    Ekstrand AJ, Sugawa N, James CD, Collins VP (1992) Amplified and rearranged epidermal growth factor receptor genes in human glioblastomas reveal deletions of sequences encoding portions of the N- and/or C-terminal tails. Proc Natl Acad Sci USA 89:4309–4313PubMedCrossRefGoogle Scholar
  80. 80.
    Nishikawa R, Ji XD, Harmon RC, Lazar CS, Gill GN, Cavenee WK, Huang HJ (1994) A mutant epidermal growth factor receptor common in human glioma confers enhanced tumorigenicity. Proc Natl Acad Sci USA 91:7727–7731PubMedCrossRefGoogle Scholar
  81. 81.
    Huang H-JS, Nagane M, Klingbeil CK, Lin H, Nishikawa R, Ji XD, Huang CM, Gill GN, Wiley HS, Cavenee WK (1997) The enhanced tumorigenic activity of a mutant epidermal growth factor receptor common in human cancers is mediated by threshold levels of constitutive tyrosine phosphorylation and unattenuated signaling. J Biol Chem 272:2927–2935PubMedCrossRefGoogle Scholar
  82. 82.
    Nagane M, Coufal F, Lin H, Bogler O, Cavenee WK, Huang Hi (1996) A common mutant epidermal growth factor receptor confers enhanced tumorigenicity on human glioblastoma cells by increasing proliferation and reducing apoptosis. Cancer Res 56:5079–5086PubMedGoogle Scholar
  83. 83.
    Nagane M, Levitzki A, Gazit A, Cavenee WK, Huang HJ (1998) Drug resistance of human glioblastoma cells conferred by a tumor-specific mutant epidermal growth factor receptor through modulation of Bcl-XL and caspase-3-like proteases. Proc Natl Acad Sci USA 95:5724–5729PubMedCrossRefGoogle Scholar
  84. 84.
    Tsai CM, Levitzki A, Wu LH, Chang KT, Cheng CC, Gazit A, Perng RP (1996) Enhancement of chemosensitivity by tyrphostin AG825 in high-p185(neu) expressing non-small cell lung cancer cells. Cancer Res 56:1068–1074PubMedGoogle Scholar
  85. 85.
    Hannun YA (1994) The sphingomyelin cycle and the second messenger function of ceramide. J Biol Chem 269:3125–3128PubMedGoogle Scholar
  86. 86.
    Hannun YA, Linardic CM (1994) Sphingolipid breakdown products: anti-proliferative and tumor-suppressor lipids. Biochim Biophys Acta 1154:223–236Google Scholar
  87. 87.
    Kolesnick R, Golde DW (1994) The sphingomyelin pathway in tumor necrosis factor and interleukin-1 signaling. Cell 77:325–328PubMedCrossRefGoogle Scholar
  88. 88.
    Liu B, Obeid LM, Hannun YA (1997) Sphingomyelinases in cell regulation. Cell Dev Biol 8:311–322CrossRefGoogle Scholar
  89. 89.
    Hannun YA (1996) Functions of ceramide in coordinating cellular responses to stress. Science 274:1855–1859PubMedCrossRefGoogle Scholar
  90. 90.
    Martin SJ, O’Brien GA, Nishioka WK, McGahon AJ, Mahboubi A, Saido TC, Green DR (1995a) Proteolysis of fodrin (non-erythroid spectrin) during apoptosis. J Biol Chem 270:6425–6428PubMedCrossRefGoogle Scholar
  91. 91.
    Zhang J, Alter N, Reed JC, Borner C, Obeid LM, Hannun YA (1996) Bcl-2 interrupts the ceramide-mediated pathway of cell death. Proc Natl Acad Sci USA 93:5325–5328PubMedCrossRefGoogle Scholar
  92. 92.
    Martin SJ, Reutelingsperger CP, McGahon AJ, Rader JA, van Schie RC, LaFace DM, Green DR (1995b) Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J Exp Med. 182:1545–1556PubMedCrossRefGoogle Scholar
  93. 93.
    Dobrowsky RT, Hannun YA (1992) Ceramide stimulates a cytosolic protein phosphatase. J Biol Chem 267:5048–5051PubMedGoogle Scholar
  94. 94.
    Wolff RA, Dobrowsky RT, Bielawska A, Obeid LM, Hannun YA (1994) Role of ceramide-activated protein phosphatase in ceramide-mediated signal transduction. J Biol Chem 269:19605–19609PubMedGoogle Scholar
  95. 95.
    Joseph CK, Byun H-S, Bittman R, Kolesnick RN (1993) Substrate recognition by ceramide-activated protein kinase. J Biol Chem 268:20002–20006PubMedGoogle Scholar
  96. 96.
    Mathias S, Dressler KA, Kolensnick RN (1991) Characterization of a ceramide-activated protein kinase: Stimulation by tumor necrosis factor a. Proc Natl Acad Sci USA 88:10009–10013Google Scholar
  97. 97.
    Faucher M, Girones N, Hannun YA, Bell RM, Davis RJ (1988) Regulation of the epidermal growth factor receptor phosphorylation state by sphingosine in A431 human epidermoid carcinoma cells. J Biol Chem 263:5319–5327PubMedGoogle Scholar
  98. 98.
    Goldkom T, Dressler KA, Muindi J, Radin NS, Mendelsohn J, Menaldino D, Liotta D, Kolesnick RN (1991) Ceramide stimulates epidermal growth factor receptor phosphorylation in A431 human epidermoid carcinoma cells. J Biol Chem 266:16092–16097Google Scholar
  99. 99.
    Liu J, Mathias S, Yang Z, Kolesnick RN (1994) Regulation and tumor necrosis factor-a stimulation of a 97-kDa ceramide-activated protein kinase. J Biol Chem 269:3047–3052PubMedGoogle Scholar
  100. 100.
    Cifone MG, Roncaioli P, De Maria R, Camarda G, Santoni A, Ruberti G, Testi R (1995) Multiple pathways originate at the Fas/APO-1 (CD95) receptor: sequential involvement of phosphatidylcholine-specific phospholipase C and acidic sphingomyelinase in the propagation of the apoptotic signal. EMBO J 14:5859–5868PubMedGoogle Scholar
  101. 101.
    Wang E, Norred WP, Bacon CW, Riley RT, Merrill AH Jr (1991) Inhibition of sphingolipid biosynthesis by fumosines. J Biol Chem 266:14486–14490PubMedGoogle Scholar
  102. 102.
    Suzuki A, Iwasaki M, Kato M, Wagai N (1997) Sequential operation of ceramide synthesis and ICE cascade in CPT-11-initiated apoptotic death signaling. Exp Cell Res 233:41–47PubMedCrossRefGoogle Scholar
  103. 103.
    Itoh N, Yonehara S, Ishii A, Yonehara M, Mizushima S, Sameshima M, Hase A, Seto Y, Nagata S (1991) The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 66:233–243PubMedCrossRefGoogle Scholar
  104. 104.
    Sato T, Erie S, Kitada S, Reed JC (1995) FAP-1: a protein tyrosine phosphatase that associates with Fas. Science 268:411–415PubMedCrossRefGoogle Scholar
  105. 105.
    Chinnaiyan AM, O’Rourke K, Tewari M, Dixit VM (1995) FADD. a novel death domain-containing protein interacts with the death domain of Fas and initiates apoptosis. Cell 81:513–523CrossRefGoogle Scholar
  106. 106.
    Boldin MP, Varfolomeev EE, Pancer Z, Meett IL, Camonis JH, Wallach D (1995) A novel protein that interacts with the death domain of Fas/APO1 contains a sequence motif related to the death domain. J Biol Chem 270:7795–7798PubMedCrossRefGoogle Scholar
  107. 107.
    Kischkel FC, Hellbardt S, Behrmann I, Germer M, Pawlita M, Krammer PH, Peter ME (1995) Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a deathinducing signaling complex (DISC) with the receptor. EMBO J 14:5579–5588PubMedGoogle Scholar
  108. 108.
    Stanger BZ, Leder P, Lee TH, Kim E, Seed B (1995) RIP, a novel protein containing a death domain that interacts with Fas/APO-1(CD90) in yeast and causes cell death. Cell 81:513–523PubMedCrossRefGoogle Scholar
  109. 109.
    Itoh N, and Nagata S (1993) A novel protein domain required for apoptosis. J Biol Chem 268:10932–10937PubMedGoogle Scholar
  110. 110.
    Kyriakis JM, Banerjee P, Nikolakaki E, Dai T, Rubie EA, Ahmad MF, Avruch J, Woodgett JR (1994) The stress-activated protein kinase subfamily of c-Jun kinases. Nature 369:156–160PubMedCrossRefGoogle Scholar
  111. 111.
    Derijard B, Hibi M, Wu L-H, Barrett T, Su B, Deng T, Karin M, Davis RJ (1994) JNKI: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76:1025–1037PubMedCrossRefGoogle Scholar
  112. 112.
    Sanchez I, Hughes RT, Mayer BJ, Yee K, Woodgett JR, Avruch J, Kyriakis JM, Zon LI (1994) Role of SAPK/ERK kinase-1 in the stress-activated pathway regulating transcription factor c-Jun. Nature 372:794–798PubMedGoogle Scholar
  113. 113.
    Yan M, Dai T, Deak JC, Kyriakis JM, Zon LI, Woodgett JR, Templeton DJ (1994) Activation of stress-activated protein kinase by MEKK1 phosphorylation of its activator SEK1. Nature 372:798–800PubMedGoogle Scholar
  114. 114.
    Liu Y, Gorospe M, Yang C, Holbrook NJ (1995) Role of mitogen-activated protein kinase phosphatase during the cellular response to genotoxic stress. J Biol Chem 270:8377–8380PubMedCrossRefGoogle Scholar
  115. 115.
    Hibi M, Lin A, Smeal T, Minden A, Karin M (1993) Identification of an oncoproteinand UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes Dev 7:2135–2148PubMedCrossRefGoogle Scholar
  116. 116.
    Seimiya H, Mashima T, Toho M, Tsuruo T (1997) c-Jun NH2- terminal kinase-mediated activation of interleukin-1(3 converting enzyme/CED-3-like protease during anticancer drug-induced apoptosis. J Biol Chem 272:4631–4636PubMedCrossRefGoogle Scholar
  117. 117.
    Beyaert R, Fiers W (1994) Molecular mechanisms of tumor necrosis factor-induced cytotoxicity. What we do understand and what we do not. FEBS Lett 340:9–16PubMedCrossRefGoogle Scholar
  118. 118.
    Guo YL, Baysal K, Kang B, Yang LJ, Williamson JR (1998a) Correlation between sustained c-Jun N-terminal protein kinase activation and apoptosis induced by tumor necrosis factor-a in rat mesangial cells. J Biol Chem 273:4027–4034PubMedCrossRefGoogle Scholar
  119. 119.
    Wilkinson SE, Parker PJ, Nixon JS (1993) Isoenzyme specificity of bisindolylmaleimides, selective inhibitors of protein kinase C. Biochem J 294:335–337PubMedGoogle Scholar
  120. 120.
    Beltman J, McCormick F, Cook SJ (1996) The selective protein kinase C inhibitor, Ro31–8229, inhibits mitogen-activated protein kinase phosphatase-1(MKP-1) expression, induces c-Jun expression, and activates Jun N-terminal kinase. J Biol Chem 271:27018–27024PubMedCrossRefGoogle Scholar
  121. 121.
    Guo YL, Kang B, Williamson JR (1998) Inhibition of the expression of mitogen-activated protein phosphatase-1 potentiates apoptosis induced by tumor necrosis factor-a in rat mesangial cells. J Biol Chem 273:10362–10366PubMedCrossRefGoogle Scholar
  122. 122.
    Bronestein J, Bull A (1993) The correlation between 13-hydroxyoctadecadienoate dehydrogenase (13-HODE dehydrogenase) and intestinal cell differentiation. Prostaglandins 46:387–395CrossRefGoogle Scholar
  123. 123.
    Eberhart CE, DuBois RN (1995) Eicosanoids and the gastrointestinal tract. Gastroenterology 109:285–301PubMedCrossRefGoogle Scholar
  124. 124.
    Tsuji M, DuBois RN (1995) Alterations in cellular adhesion and apoptosis in epithelial cells overexpressing prostaglandin endoperoxide synthase 2. Cell 83:493–501CrossRefGoogle Scholar
  125. 125.
    Williams CS, DuBois RN (1996) Prostaglandin endoperoxide synthase: why two isoform? Am J Physiol 270:G393–G400.Google Scholar
  126. 126.
    DuBois RN, Shao J, Tsuji M, Sheng H, Beauchamp RD (1996) GI delay in cells overexpressing prostaglandin endoperoxide synthase-2. Cancer Res 56:733–737PubMedGoogle Scholar
  127. 127.
    Thun MH, Namboodiri MM, Heath CW (1991) Aspirin use and reduced risk of fatal colon cancer. N Engl J Med 325:1593–1596PubMedCrossRefGoogle Scholar
  128. 128.
    Giardiello FM, Hamilton SR, Krush AJ (1993) Treatment of colonic and rectal adenomas with sulindac in familial adenomatous polyposis. N Engl J Med 328:113–1316CrossRefGoogle Scholar
  129. 129.
    Waddell WR, Ganser GF, Cerise EJ, Loughry RW (1989) Sulindac for polyposis of the colon. Am J Sug 157:175–179CrossRefGoogle Scholar
  130. 130.
    Chan TA, Morin PJ, Vogelstein B, Kinzler KW (1998) Mechanism underlying nonsteroidal antiinflammatory drug-mediated apoptosis. Proc Natl Acad Sci USA 95:681–686PubMedCrossRefGoogle Scholar
  131. 131.
    Means AR (1984) Calcium, calmodulin and cell cycle regulation. FEBS Lett 347:1–4.CrossRefGoogle Scholar
  132. 132.
    Lu KP, Means AR (1993) Regulation of the cell cycle by calcium and calmodulin. Endocr Rev 14:40–58PubMedGoogle Scholar
  133. 133.
    Means AR (1988) Molecular mechanisms of action of calmodulin. Recent Prog Hormone Res 44:223–262Google Scholar
  134. 134.
    Chafouleas JG, Pardue RL, Brinkley BR, Dedman JR, Means AR (1981) Regulation of intracellular levels of calmodulin and tublin in normal and transformed cells. Proc Natl Acad Sci USA 78:996–1000PubMedCrossRefGoogle Scholar
  135. 135.
    MacManus JP, Braceland BM, Rixon RH (1981) An increase in calmodulin during growth of normal and cancerous liver in vivo. FEBS Lett 133:99–102PubMedCrossRefGoogle Scholar
  136. 136.
    Veigl ML, Vanaman TC, Brance ME, Sedwick WD (1984) Differences in calmodulin levels of normal and transformed cells as determined by culture conditions. Cancer Res 44:3184–3189PubMedGoogle Scholar
  137. 137.
    Rasmussen CD, Means AR (1987) Calmodulin is involved in regulation of cell proliferation. EMBO J 6:3961–3968PubMedGoogle Scholar
  138. 138.
    Sheng M, Thompson MA, Greenberg ME (1991) CREB: a Cat+ regulated transcription factor phosphorylated by calmodulin-dependent kinases. Science (Washington DC) 252:1427–1430CrossRefGoogle Scholar
  139. 139.
    Cheng EHC, Gorelick FS, Czemik AJ, Halt WN (1995) Calcium/calmodulin-dependent binding proteins and kinase activity in murine and human glioblastoma. Cell growth & Differ 6:1–7Google Scholar
  140. 140.
    Narin AC, Palfrey HC (1987) Identification of the major Mr 100,000 substrate for cal modulin-dependent protein kinase III in mammalian cells as elongation factor 2. J Biol Chem 262:17299–17303Google Scholar
  141. 141.
    Ryazanov AG, Shestakova EA, Natapov PG (1988) Phosphorylation of elongation factor 2 by EF-2 kinase affects rate of translation. Nature (Lond.) 334:170–173CrossRefGoogle Scholar
  142. 142.
    Palfrey HC, Nairn AC, Muldoon L, Villereal ML (1987) Rapid activation of calmodulindependent protein kinase III in mitogen-stimulated human fibroblasts. J Biol Chem 262:9785–9792PubMedGoogle Scholar
  143. 143.
    Gschwendt M, Kittstein W, Marks F (1994) Elongation factor-2 kinase: effective inhibition by the novel protein kinase inhibitor rottlerin and relative insensitivity towards staurosporine. FEBS Lett 338:85–88PubMedCrossRefGoogle Scholar
  144. 144.
    Parmer TG, Ward MD, Hait WN (1997) Effects of Rottlerin, an inhibitor of calmodulindependent kinase III, on cellular proliferation, viability, and cell cycle distribution in malignant glioma cells. Cell Growth & Differ 8:327–334Google Scholar
  145. 145.
    Carpenter CL, Cantley LC (1996) Phosphoinositide kinases. Curr. Opin. Cell Biol 5:153–158CrossRefGoogle Scholar
  146. 146.
    Ahmed NN, Grimes HL, Bellacosa A, Chan TO, Tsichlis PN (1997) Transduction of interleukin-2 antiapoptic and proliferative signals via Akt protein kinase. Proc Natl Acad Sci USA 94:3627–3632PubMedCrossRefGoogle Scholar
  147. 147.
    Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R, Cooper GM, Segal RA, Kaplan DR, Greenberg ME (1997) Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 275:661–665PubMedCrossRefGoogle Scholar
  148. 148.
    Kauffmann-Zeh A, Rodriguez-Viciana P, Ulrich E, Gilbert C, Coffer P, Downward J, Evan G (1997) Suppression of c-Myc-induced apoptosis by Ras signaling through PI(3)K and PKB. Nature 385:544–548PubMedCrossRefGoogle Scholar
  149. 149.
    Kennedy SG, Wagner AJ, Conzen SD, Jordan J, Bellacosa A, Tsichlis PN, Hay N (1997) The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal. Genes Dev. 11:701–713PubMedCrossRefGoogle Scholar
  150. 150.
    Khwaja A, Rodriguez-Viciana P, Wennstrom S, Warne PH, Downward J (1997) Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway. EMBO J 16:2783–2793PubMedCrossRefGoogle Scholar
  151. 151.
    Kulik G, Kippeal A, Weber MJ (1997) Antiapoptotic signaling by the insulin-like growth factor I receptor, phosphatidylinositol 3-kinase and Akt. Mol Cell Biol 17:1595–1606PubMedGoogle Scholar
  152. 152.
    Parrizas M, Saltie AR, LeRoith D (1997) Insulin-like growth factor 1 inhibits apoptosis using the phosphatidylinositol 3′-kinase and mitogen-activated protein kinase pathways. J Biol Chem 272:154–161PubMedCrossRefGoogle Scholar
  153. 153.
    Ui M, Okada T, Hazeki K, Hazeki O (1995) Wortmannin as unique probe for an intracellular signaling protein, phosphoinositide 3-kinase. Trends Biochem Sci 20:1456–1462CrossRefGoogle Scholar
  154. 154.
    Vlahos CJ, Matter WF, Hui KY, Brown RF (1994) A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J Biol Chem 269:5241–5248PubMedGoogle Scholar
  155. 155.
    Chou MM, Blenis J (1995) The 70kDa S6 kinase: regulation of a kinase with multiple roles in mitogenic signalling. Curr Opin Cell Biol 7:806–814PubMedCrossRefGoogle Scholar
  156. 156.
    Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91:231–241PubMedCrossRefGoogle Scholar
  157. 157.
    del Peso L, Gonzalez-Garcia M, Page C, Herrera R, Nunez G (1997) Interleukin-3induced phosphorylation of BAD through the protein kinase Akt. Science 278:687–689PubMedCrossRefGoogle Scholar
  158. 158.
    Imoto M, Umezawa K, Takahashi Y, Naganawa H, Iitaka Y, Nakamura H, Koizumi Y, Sasaki Y, Hamada M, Sawa T, Takeuchi T (1990) Isolation and structure determination of inostamycin, a novel inhibitor of phosphatidylinositol turnover. J Nat Prod, 53:825–829CrossRefGoogle Scholar
  159. 159.
    Imoto M, Taniguchi Y, Umezawa K (1992) Inhibition of CDP-DG:inositol transferase by inostamycin. J Biochem 112:299–302PubMedGoogle Scholar
  160. 160.
    Imoto M, Morii T, Deguchi A, Umezawa K (1994) Involvement of phosphatidylinositol synthesis in the regulation of S phase induction. Exp Cell Res 215:228–233PubMedCrossRefGoogle Scholar
  161. 161.
    Deguchi A, Imoto M, Umezawa K (1996) Inhibition of GI cyclin expression in normal rat kidney cells by inostamycin, a phosphatidylinositol synthesis inhibitor. J Biochem 120:1118–1122PubMedCrossRefGoogle Scholar
  162. 162.
    Imoto M, Tanabe K, Simizu S, Tashiro E, Takada M, Umezawa K (1998) Inhibition of cyclin D1 expression and induction of apoptosis by inostamycin in small cell lung carcinoma cells. Jpn J Cancer Res 89:315–322PubMedCrossRefGoogle Scholar
  163. 163.
    Enari M, Talanian RV, Wong WW, Nagata S (1996) Sequential activation of ICE-like and CPP32-like proteases during Fas-mediated apoptosis. Nature 380:723–726PubMedCrossRefGoogle Scholar
  164. 164.
    Kitagawa M, Okabe T, Ogino H, Matsumoto H, Suzuki-Takahashi I, Kokubo T, Higashi H, Saitoh S, Taya Y, Yasuda H, Okuyama A (1993) Butyrolactone I: a selective inhibitor of cdk2 and cdc2 kinase. Oncogene 8:2425–2432PubMedGoogle Scholar
  165. 165.
    Kitagawa M, Higashi H, Takahashi IS, Okabe T, Ogino H, Taya Y, Hishimura S, Okuyama A (1994) A cyclin-dependent kinase inhibitor, butyrolactone I, inhibits phosphorylation of RB protein and cell cycle progression. Oncogene 9:2549–2557PubMedGoogle Scholar
  166. 166.
    Shibata Y, Nishimura S, Okuyama A, Nakamura T (1996) p53-independent induction of apoptosis by cyclin-dependent kinase inhibition. Cell Growth Differ 7:887–891PubMedGoogle Scholar
  167. 167.
    Cobrinik D, Dowdy SF, Hinds PW, Mittnacht S, Weinberg RA (1992) The retinoblastoma protein and the regulation of vell vyvling. Trends Biochem Sci 17:312–315PubMedCrossRefGoogle Scholar
  168. 168.
    Vousden K (1993) Interaction of human papillomavirus transforming proteins with the products of tumor suppressor genes. FASEB J 7:872–879PubMedGoogle Scholar
  169. 169.
    Hayakawa Y, Sohda K, Shinya K, Hidaka T, Seto H (1995) Anguinomycin C and D, new antitumor antibiotics with selective cytotoxicity against transformed cells. J Antibiot 48:954–961PubMedCrossRefGoogle Scholar
  170. 170.
    Fornerod M, Ohno M, Yoshida M, Mattaj IW (1997) CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 90:1051–1060PubMedCrossRefGoogle Scholar
  171. 171.
    Stade K, Ford CS, Guthrie C, Weis K (1997) Exportin 1(Crmlp) is an essential nuclear export factor. Cell 90:1041–1050PubMedCrossRefGoogle Scholar
  172. 172.
    Hamamoto T, Gunji S, Tsuji H, Beppu T (1983) Leptomycins A and B, new antifungal antibiotics I. Taxonomy of the producing strain and their fermentation, purification, and characterization. J Antibiot 36:639–645PubMedCrossRefGoogle Scholar
  173. 173.
    Nishi K, Yoshida M, Fujiwara D, Nishikawa M, Horinouchi S, Beppu T (1994) Leptomycin B targets a regulatory cascade of CRM1, a fission yeast nuclear protein, involved in control or higher order chromosome structure and gene expression. J Biol Chem 269:6320–6324PubMedGoogle Scholar
  174. 174.
    Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88:323–331PubMedCrossRefGoogle Scholar
  175. 175.
    Agarwal ML, Taylor WR, Chernov MV, Chernova OB, Stark GR (1998) The p53 network. J Biol Chem 273:1–4PubMedCrossRefGoogle Scholar
  176. 176.
    Debbas M, White E (1993) Wild-type p53 mediates apoptosis by ElA which is inhibited by E1B. Genes Dev 7:546–554PubMedCrossRefGoogle Scholar
  177. 177.
    Lowe SW, Ruley HE, Jacks T, Housman DE (1993) p53-Dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74:957–968PubMedCrossRefGoogle Scholar
  178. 178.
    Lowe SW, Schmitt EM, Smith SW, Osborne BA, Jacks T (1993) p53 is required for radiation induced apoptosis in mouse thymocytes. Nature 362:847–849PubMedCrossRefGoogle Scholar
  179. 179.
    Wagner AJ, Kokontis JM, Hay N (1994) MYC-mediated apoptosis requires wild-type p53 in a manner independent of cell cycle arrest and the ability of p53 to induce p21wafl/cip1. Genes Dev 8:2817–2830PubMedCrossRefGoogle Scholar
  180. 180.
    Yonish-Rouach E, Resnitzky D, Lotem J, Sachs L, Kimchi A, Oren M (1991) Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 352:345–347PubMedCrossRefGoogle Scholar
  181. 181.
    Ko LI, Prives C (1996) p53: puzzle and paradigm. Genes Dev 10:1054–1072PubMedCrossRefGoogle Scholar
  182. 182.
    Pinhasi-Kimhi O, Michalovitz D, Ben-Zeev A, Oren M (1986) Specific interaction between the p53 cellular tumour antigen and major heat shock proteins. Nature 320:182–185PubMedCrossRefGoogle Scholar
  183. 183.
    Hinds PW, Finlay C, Frey A, Levine AJ (1987) Immunological evidence for the association of p53 with a heat shock protein, hsc70, in p53-plus-ras-transformed cell lines. Mol Cell Biol 7:2863–2869PubMedGoogle Scholar
  184. 184.
    Finlay CA, Hinds PW, Tan TH, Eliyahu D, Oren M, Levine AJ (1988) Activating mutations for transformation by p53 produce a gene product that forms an hsc70-p53 complex with an altered half-life. Mol Cell Biol 8:531–539PubMedGoogle Scholar
  185. 185.
    Sturzbecher HW, Addison C, Jenkins JR (1988) Characterization of mutant p53-Hsp72/ 73 protein-protein complexes by transient expression in monkey COS cells. Mol Cell Biol 8:3740–3747PubMedGoogle Scholar
  186. 186.
    Sturzbecher HW, Chumakov P, Welch WJ, Jenkins JR (1987) Mutant p53 proteins bind Hsp 72/73 cellular heat shock-related proteins in SV40-transformed monkey cells. Oncogene 1:201–211PubMedGoogle Scholar
  187. 187.
    Hainaut P, Milner J (1992) Interaction of heat-shock protein 70 with p53 translated in vitro: evidence for interaction with dimeric p53 and for a role in the regulation of p53 conformation. EMBO J 11:3513–3520PubMedGoogle Scholar
  188. 188.
    Whitesell L, Mimnaugh EG, De Costa B, Myers CE, Neckers LM (1994) Inhibition of heat shock protein Hsp90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci USA 91:8324–8328PubMedCrossRefGoogle Scholar
  189. 189.
    Blagosklonny MV, Toretsky J, Neckers L (1995) Geldanamycin selectively destabilizes and conformationally alters mutated p53. Oncogene 11:933–939PubMedGoogle Scholar
  190. 190.
    Caelles C, Helmberg A, Karin M (1994) p53-dependent apoptosis in the absence of transcriptional activation of p53-target genes. Nature 370:220–223PubMedCrossRefGoogle Scholar
  191. 191.
    Haupt Y, Rowan S, Shaulian E, Vousden KH, Oren M (1995) Induction of apoptosis in HeLa cells by trans-activation-deficient p53. Genes Dev 9:2170–2183PubMedCrossRefGoogle Scholar
  192. 192.
    Yan Y, Shay JW, Wright WE, Mumby MC (1997) Inhibition of protein phosphatase activity induces p53-dependent apoptosis in the absence of p53 transactivation. J Biol Chem. 272:15220–15226PubMedCrossRefGoogle Scholar
  193. 193.
    Goldstein JL, Helgeson JA, Brown MS (1979) Inhibition of cholesterol synthesis with compactin renders growth of cultured cells dependent on the low density lipoprotein receptor. J Biol Chem 254:5403–5409PubMedGoogle Scholar
  194. 194.
    Alberts AW, Chen J, Kuron G, Hunt V, Huff J, Hoffman C, Rothrock J, Lopez M, Joshua H, Harris E, Patchett A, Monaghan R, Currie S, Stapley E, Albers-Schonberg G, Hensens O, Hirshfield J, Hoogsteen K, Liesch J, Springer J (1980) Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proc Natl Acad Sci USA 77:3957–3961PubMedCrossRefGoogle Scholar
  195. 195.
    Keyomarsi K, Sandoval L, Band V, Pardee AB (1991) Synchronization of tumor and normal cells from G1 to multiple cell cycles by lovastatin. Cancer Res 51:3602–3609PubMedGoogle Scholar
  196. 196.
    Marcelli M, Cunningham GR, Haidacher SJ, Padayatty SJ, Sturgis L, Kagan C, Denner L (1998) Caspase-7 is activated during lovastatin-induced apoptosis of the prostate cancer cell line LNCap. Cancer Res 58:76–83SPubMedGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 2000

Authors and Affiliations

  • Masaya Imoto

There are no affiliations available

Personalised recommendations