Advertisement

Electro-Organic Reactions. Part 48: Pathways for Carbon-Carbon Bond Formation: The Redox Chemistry of Quinodimethanes and of Alkenyl-Substituted Heteroaromatics

  • James H. P. Utley
  • Merete Folmer Nielsen
  • Robert G. Janssen
  • Xavier Salvatella
  • Sabine Szunerits
  • Erada Oguntoye
  • Peter B. Wyatt

Abstract

Carbon-carbon bond-forming reactions involving cathodic reduction of quinonemethides, electrogeneration of quinodimethanes and reduction of some vinylpyridines and vinylquinolines, are compared and contrasted. The quinonemethides undergo “conventional” electrohydrodimerisation via radical-anion coupling. Quinodimethanes (QDMs), formed by cathodic elimination from 1,4- and 1,2-di-(halomethyl)arenes, react usefully to give polymers or, for o-quinodimethanes, as dienes in Diels-Alder reactions. QDMs are electroactive and have been characterised electrochemically and spectroscopically. The vinylheteroaromatics give trans-1, 2-diheteroarylcyclobutanes as major products and these are shown to arise from an overall 0 F reaction (catalytic chain process) but with the key initial step being reaction between radical-anion and the neutral starting material.

Keywords

Maleic Anhydride Fumaric Acid Cathodic Reduction Benzyl Bromide Redox Catalysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    M.O.F. Goulart and J.H.P. Utley, Journal of Organic Chemistry, 1988, 53, 2520; R. Ludwig and J.H.P. Utley, unpublished results;Google Scholar
  2. (2).
    By derivative cyclic voltammetry (M.F. Nielsen, Copenhagen);Google Scholar
  3. (3).
    M.O.F. Goulart, C.Z. Smith and J.H.P. Utley, unpublished results;Google Scholar
  4. (4).
    H.G. Gilch, J. Polymer Science, 1966, 4, 1351;Google Scholar
  5. (5).
    F.H. Covitz, J. Am. Chem. Soc., 1967, 89, 5403;CrossRefGoogle Scholar
  6. (6).
    a) J.H.P. Utley, Y. Gao, J. Gruber and R. Lines, J. Mater. Chem., 1995, 5, 1297;Google Scholar
  7. J.H.P. Utley, Y. Gao, J. Gruber, Y. Zhang and A. Munoz-Escalona, J. Materials Chem., 1995, 5, 1837;CrossRefGoogle Scholar
  8. (7).
    M.F. Nielsen, S. Szunerits and J.H.P. Utley, unpublished results;Google Scholar
  9. (8).
    K. Daasbjerg, S.U. Pedersen, S. Szunerits and J.H.P. Utley, unpublished results;Google Scholar
  10. (9).
    E. Eru, G.E. Hawkes, J.H.P. Utley and P.B. Wyatt, Tetrahedron, 1995, 51, 3033;CrossRefGoogle Scholar
  11. (10).
    E. Oguntoye (neé Em), S. Szunerits, J.H.P. Utley and P.B. Wyatt, Tetrahedron, 1996, 52, 7771;CrossRefGoogle Scholar
  12. (11).
    A.J. Bard, J. Puglisi, J.V. Henkel and A. Lomax, Trans. Faraday Discussions, 1973, 56, 353;CrossRefGoogle Scholar
  13. (12).
    Xavier Salvatella, MSc Thesis (London, 1997);Google Scholar
  14. (13).
    F. Zhou and A.J. Bard, J. Am. Chem. Soc., 1994, 116, 393;CrossRefGoogle Scholar
  15. (14).
    I. Fussing, M. Güllü, O. Hammerich, A. Hussain, M.F. Nielsen and J.H.P. Utley, J. Chem. Soc., Perkin Trans. 2,1996, 649; O. Hammerich and M.F. Nielsen, Acta Chem. Scand.,in press;Google Scholar
  16. (15).
    J.D. Anderson, M.M. Baizer and E.J. Prill, J. Org . Chem., 1965, 30, 1645;CrossRefGoogle Scholar
  17. (16).
    R.G. Janssen, M. Motevalli and J.H.P. Utley, unpublished resultsGoogle Scholar

Copyright information

© Springer Japan 1998

Authors and Affiliations

  • James H. P. Utley
    • 1
  • Merete Folmer Nielsen
    • 2
  • Robert G. Janssen
    • 1
  • Xavier Salvatella
    • 1
  • Sabine Szunerits
    • 1
  • Erada Oguntoye
    • 1
  • Peter B. Wyatt
    • 1
  1. 1.Department of Chemistry, Queen Mary and Westfield CollegeUniversity of LondonLondonUK
  2. 2.Department of ChemistryUniversity of Copenhagen, Symbion Science ParkCopenhagen ØDenmark

Personalised recommendations