Electron Transfer Reactions of Semi-Artificial Biomolecules

  • Isao Taniguchi
Conference paper


Using functional electrodes electrochemical responses of semi-artificially modified myoglobin and ferredoxin molecules have been examined to understand biological functions in more detail. Some reconstituted myoglobin molecules of which redox center was changed with artificially designed porphyrins showed that for determining the redox potential axial ligands are important when the porphyrin is incorporated inside the apomyoglobin. Change in metal ion of the redox center gave significant change in the electron transfer rate. For ferredoxin some evolutionary-conserved amino acid residues were changed to understand the roles of the amino acid ion biological functions using mutated molecules, and some particular amino acid residues were found to have distinguished roles in biological functions such as controlling the redox potential and as the binding site with enzymes.


Redox Potential Electron Transfer Reaction Electron Transfer Rate Redox Center Electron Transfer Rate Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    I. Taniguchi, “Redox Mechanisms and Interfacial Properties of Molecules of Biological Importance,” Eds. by F.A. Schultz and I. Taniguchi, Electrochemical Society, Inc., p. 9, Pennington, (1993), and references cited therein.Google Scholar
  2. 2).
    F. M. Hawkridge and I. Taniguchi, Comments on Inorg. Chem., 17, 163 (1995).CrossRefGoogle Scholar
  3. 3).
    I. Taniguchi, S. Yoshimoto and K. Nishiyama, Chem. Lett., 353 (1997).Google Scholar
  4. 4).
    I. Taniguchi, K. Watanabe, M. Tominaga and F.M. Hawkridge, J. Electroanal. Chem , 333, 331 (1992);CrossRefGoogle Scholar
  5. M. Tominaga, T. Kumagai, S. Takita and I. Taniguchi, Chem. Lett., 1771 (1993).Google Scholar
  6. 5).
    I. Taniguchi, Y. Mie, K. Nishiyama, V. Brabec, O. Novakova, S. Neya and N. Funasaki, J. Electroanal. Chem., 420, 5 (1997).CrossRefGoogle Scholar
  7. 6).
    I. Taniguchi, C.-Z. Lee, M. Ishida and Q. Yao, to be published.Google Scholar
  8. 7).
    I. Taniguchi, Y. Mie, K. Sonoda, E. Krestyn S. Neya and N. Funasaki, to be published.Google Scholar
  9. 8).
    I. Taniguchi, Y. Hirakawa, K. Iwakiri, M. Tominaga and K. Nishiyama, J. Chem. Soc., Chem. Commun., 953 (1994);Google Scholar
  10. K. Nishiyama, H. Ishida and I. Taniguchi, J. Electroanal. Chem, 373, 255 (1994).Google Scholar
  11. 9).
    I. Taniguchi, A. Miyahara, K. Iwakiri, Y. Hirakawa, K. Hayashi, K. Nishiyama, T. Akashi and T. Hase, Chem. Lett., 929 (1997).Google Scholar
  12. 10).
    I. Taniguchi, K. Iwakiri, K. Nishiyama and T. Matsubayashi, Denki Kagaku (J. Electrochem. Soc. Jpn.), 63, 1191 (1995).Google Scholar
  13. 11).
    I. Taniguchi, “Novel Trends in Electroorganic Synthesis,” Kodansha-Elsevier, p.393 (1995); Ext. Abst. of the 185th Meeting of Electrochem. Soc., 94–1, 1135 (1994).Google Scholar

Copyright information

© Springer Japan 1998

Authors and Affiliations

  • Isao Taniguchi
    • 1
  1. 1.Department of Applied Chemistry and Biochemistry, Faculty of EngineeringKumamoto UniversityKumamoto 860Japan

Personalised recommendations