Palynological Approaches to the Origin and Early Diversification of Angiosperms

  • Masamichi Takahashi


Palynology deals with the walls of pollen grains and spores, which show great diversity in structure and sculpture [1]. Modern palynological studies consist of pollen morphology, pollen development, paleopalynology, and pollen analysis. Three international symposia have been held on palynology. The first symposium, on the evolutionary significance of the exine, organized by Ferguson and Muller, was held at the Linnean Society of London and the Royal Botanical Gardens, Kew in 1974 [2]. The second symposium, titled “Pollen and Spore: Form and Function,” was held at the Linnean Society of London and the British Museum (Natural History) in 1985 [3]. The third symposium, “Pollen and Spores: Patterns of Diversification,” was held at the Linnean Society of London and the Natural History Museum in 1990 [4]. These symposia demonstrated the exceptional opportunities afforded by pollen grains and spores for bringing together findings from studies of the origin and diversification of land plants. The systematic and paleontological applications of palynology exploit the complexity and diversity of organization present in pollen grains and spores. Recent advances in palynology, in association with the progress of electron microscopy, have had a remarkable impact on our understanding of the origin and diversification of the angiosperms. In this chapter, some distinguished contributions to paleopalynology and studies of pollen morphology and pollen development are shown, with special attention to the origin and diversification of angiosperms.


Pollen Morphology Pollen Wall Fossil Pollen Linnean Society Angiosperm Pollen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Erdtman G (1952) Pollen morphology and plant taxonomy. 1. Angiosperms. Almqvist & Wiksell, StockholmGoogle Scholar
  2. 2.
    Ferguson IK, Muller J (eds) (1976) The evolutionary significance of the exine. Linnean Society of symposium series No. 1. Academic, LondonGoogle Scholar
  3. 3.
    Blackmore S, Ferguson IK (eds) (1986) Pollen and spore: form and function. Academic, LondonGoogle Scholar
  4. 4.
    Blackmore S, Barnes SH (eds) (1991) Pollen and spores: patterns of diversity, Systematic Association special vol 44. Clarendon, OxfordGoogle Scholar
  5. 5.
    Faegri K, Iversen J (1989) Textbook of pollen analysis. Wiley, ChichesterGoogle Scholar
  6. 6.
    Mohl H (1835) Sur la structure et les formes des grains de pollen. Ann Sci Nat ser 2, 3:148–180Google Scholar
  7. 7.
    Hassell AH (1842) Observations on the structure of the pollen granule, considered principally in reference to its eligibility as a means of classification. Ann Mag Nat Hist 889:92–108, 544–573Google Scholar
  8. 8.
    Ferguson IK (1985) The role of pollen morphology in plant systematics. An Asoc Palinol Leng Esp 2:5–18Google Scholar
  9. 9.
    Fernandez-Moran H, Dahl AO (1952) Electron microscopy of ultra-thin frozen sections of pollen grains. Science 116:465–467PubMedCrossRefGoogle Scholar
  10. 10.
    Rowley JR (1959) The fine structure of the pollen wall in the Commelinaceae. Grana 2:3–31CrossRefGoogle Scholar
  11. 11.
    Thornhill JW, Matta RK, Wood W H (1965) Examining three-dimensional microstructures with the scanning electron microscope. Grana 6:3–6CrossRefGoogle Scholar
  12. 12.
    Nowicke JW and Skvarla JJ (1981) Pollen morphology and the relationships of the Berberidaceae. Smithsonian Contrib Bot 50:1–83CrossRefGoogle Scholar
  13. 13.
    Nowicke JW (1975) Pollen morphology in the order Centrospermae. Grana 15:51–77Google Scholar
  14. 14.
    Nowicke JW, Skvarla JJ (1977) Pollen morphology and the relationship of the Plumbaginaceae, Polygonaceae and Primulaceae to the order Centrospermae. Smithsonian Contr Bot 37:1–64Google Scholar
  15. 15.
    Nowicke JW, Skvarla JJ (1980) Pollen morphology: the potential influence in higher order systematics. Ann Missouri Bot Gard 66:633–700CrossRefGoogle Scholar
  16. 16.
    Skvarla JJ, Nowicke JW (1976) Ultrastructure of pollen exine in centrospermous families. Pl Syst Evol 126:55–78CrossRefGoogle Scholar
  17. 17.
    Skvarla JJ, Turner BL (1966) Systematic implications from electron microscopic studies of Compositae pollen: a review. Ann Missouri Bot Gard 53:220–244CrossRefGoogle Scholar
  18. 18.
    Skvarla JJ, Turner BL, Patel VC, Tomb AS (1977) Pollen morphology in the Compositae and in morphologically related families. In: Heywood VH, Harborne JB, Turner BL (eds) The biology and chemistry of the compositae. Academic, London, pp 141–248Google Scholar
  19. 19.
    Blackmore S (1981) Palynology and intergeneric relationships in subtribe Hyoseridinae (Compositae: Lactuceae). Bot J Linn Soc 82:1–13CrossRefGoogle Scholar
  20. 20.
    Blackmore S (1982) Palynology of subtribe Scorzonerinae (Compositae: Lactuceae) and its taxonomic significance. Grana 21:149–160CrossRefGoogle Scholar
  21. 21.
    Blackmore S (1986) The identification and taxonomic significance of lophate pollen in the Compositae. Can J Bot 64:3101–3112CrossRefGoogle Scholar
  22. 22.
    Ferguson IK (1981) The pollen morphology of Macrotyloma (Leguminosae: Papilionoideae; Phaseoleae). Kew Bull 36:455–461CrossRefGoogle Scholar
  23. 23.
    Ferguson IK (1984) Pollen morphology and biosystematics of the subfamily Papilionoideae (Leguminosae). In: Grant WF (ed) Plant Biosystematics. Academic, London, pp 377–394Google Scholar
  24. 24.
    Ferguson IK, Schrire BD, Shepperson R (1994) Pollen morphology of the tribe Sophoreae and relationships between subfamilies Caesalpinioideae and Papilionoideae. In: Ferguson IK, Tucker S (eds) Advances in legume systematics 6: structural Botany, Royal Botanic Gardens, Kew, pp 53–96Google Scholar
  25. 25.
    Ferguson IK, Skvarla JJ (1981) The pollen morphology of the subfamily Papilionoideae (Leguminoseae). In: Polhill RM, Raven PH (eds) Advances in legume systematics. Royal Botanic Gardens, Kew, pp 859–896Google Scholar
  26. 26.
    Ferguson IK and Skvarla JJ (1982) Pollen morphology in relation to pollinators in Papilionoideae (Leguminosae). Bot J Linn Soc 83:183–193CrossRefGoogle Scholar
  27. 27.
    Takahashi M (1982) Pollen morphology in North American species of Trillium.. Am J Bot 69:1185–1195CrossRefGoogle Scholar
  28. 28.
    Takahshi M 1983 Pollen morphology in Asiatic species of Trillium. Bot Mag Tokyo 96:377–384CrossRefGoogle Scholar
  29. 29.
    Kato H, Terauchi R, Utech FH, Kawano S (1995) Molecular systematics of the Trilliaceae sensu lato as inferred from rbcL. sequence data. Mol Phylogenet Evol 4:184–193PubMedCrossRefGoogle Scholar
  30. 30.
    Dahl AO, Rowley JR (1965) Pollen of Degeneria vitiensis. J Arnold Arbor 50:1–35Google Scholar
  31. 31.
    Walker JW, and Skvarla JJ (1975) Primitively columellaless pollen: a new concept in the evolutionary morphology of angiosperms. Science 187:445–447PubMedCrossRefGoogle Scholar
  32. 32.
    Walker JW (1976) Evolutionary significance of the exine in the pollen of primitive angiosperms. In: Ferguson IK, Muller J (eds) The evolutionary significance of the exine. Linn Soc Symp Ser No. 1, Academic, London, pp 251–308Google Scholar
  33. 33.
    Ferguson IK, Skvarla JJ (1983) The granular interstitium in the pollen of subfamily Papilionoideae (Leguminosae). Am J Bot 70:1401–1408CrossRefGoogle Scholar
  34. 34.
    Takahashi M, Skvarla JJ (1990) Pollen development in Oenothera biennis. (Onagraceae). Am J Bot 77:1142–1148CrossRefGoogle Scholar
  35. 35.
    Zavada MS (1984) Angiosperm origins and evolution based on dispersed fossil pollen ultrastructure. Ann Missouri Bot Gard 71:444–463CrossRefGoogle Scholar
  36. 36.
    Matinsson K (1993) The pollen of Swedish Callitriche (Callitrichaceae)—trends towards submergence. Grana 32:198–209CrossRefGoogle Scholar
  37. 37.
    Pettitt JM (1976) Pollen wall and stigma surface in the marine angiosperms, Thalassi. and Thalassodendron. Micron 7:21–32Google Scholar
  38. 38.
    Pettitt JM (1980) Reproduction in seagrasses: nature of the pollen and receptive surface of the stigma in the Hydrocharitaceae. Ann Bot 45:257–271Google Scholar
  39. 39.
    Pettitt JM, Jermy AC (1975) Pollen in hydrophilous angiosperms. Micron 5:377–405Google Scholar
  40. 40.
    Takahashi M (1994) Pollen development in a submerged plant, Ottelia alismoides. (L.) Pers. (Hydrocharitaceae). J Plant Res 197:161–164CrossRefGoogle Scholar
  41. 41.
    Takahashi M (1995) Development of structure-less pollen wall in Ceratophyllum dermersum. L. (Ceratophyllaceae). J Plant Res 198:205–208CrossRefGoogle Scholar
  42. 42.
    Hesse M, Kubitzki K (1983) The sporoderm ultrastructure in Persea, Nectandra, Hernandia, Gomortega,. and some other lauralean genera. P1 Syst Evol 141:299–311CrossRefGoogle Scholar
  43. 43.
    Raj B, Van der Werff H (1988) A contribution to the pollen morphology of neotropical Lauraceae. Ann Missouri Bot Gard 75:130–167CrossRefGoogle Scholar
  44. 44.
    Rowley J R, Vasanthy G (1993) Exine development, structure, and resistance in pollen of Cinnamomum. (Lauraceae). Grana (Suppl) 2:49–53CrossRefGoogle Scholar
  45. 45.
    Skvarla JJ, Rowley JR (1970) The pollen wall of Cann. and its similarity to the germinal apertures of other pollen. Am J Bot 57:519–529CrossRefGoogle Scholar
  46. 46.
    Rowley JR, Skvarla JJ (1975) The glycocalyx and initiation of exine spinules on microspores of Canna.. Am J Bot 62:479–485CrossRefGoogle Scholar
  47. 47.
    Rowley JR, Skvarla JJ (1986) Development of the pollen grain wall in Canna. Nord J Bot 6:39–65CrossRefGoogle Scholar
  48. 48.
    Kress WJ (1986) Exineless pollen and structure and pollination systems of tropical Heliconi. (Heliconiaceae). In: Blackmore S, Ferguson IK (eds) Pollen and spores: form and function. Academic, London, pp 329–345Google Scholar
  49. 49.
    Kress WJ, Stone DE (1982) Nature of the sporoderm in monocotyledons, with special reference to the pollen grains of Cann. and Heliconia. Grana 21:129–148CrossRefGoogle Scholar
  50. 50.
    Kress WJ, Stone DE (1983) Morphology and phylogenetic significance of exine-less pollen of Heliconi.(Heloconiaceae). Syst Bot 8:149–167CrossRefGoogle Scholar
  51. 51.
    Kress WJ, Stone DE, Seller SC (1978) Ultrastructure of exine-less pollen: Heliconi. (Heliconiaceae). Am J Bot 65:1064–1076CrossRefGoogle Scholar
  52. 52.
    Stone DE, Seller SC, Kress WJ (1979) Ontogeny of exineless pollen in Heliconia., banana relative. Ann Missouri Bot Gard 66:701–730CrossRefGoogle Scholar
  53. 53.
    Stone DE, Sellers SC, and Kress WJ (1981) Ontogenetic and evolutionary implications of a neotenous exine in Tapeinochilos. (Zingerales: Costaceae) pollen. Am J Bot 68:49–63CrossRefGoogle Scholar
  54. 54.
    Zavada MS (1991) Determinating character polarities in pollen. In: Blackmore S, Barnes H (eds) Pollen and spores: patterns of diversification. Oxford University Press, London, pp 239–256Google Scholar
  55. 55.
    Blackmore S, Barnes SH (1987) Embryophyte spore walls: origin, development, and homologies. Cladistics 3:185–195CrossRefGoogle Scholar
  56. 56.
    Kurmann MH (1989) Pollen wall formation in bies concolor and a discussion on wall layer homologies. Can J Bot 67:2489–2504CrossRefGoogle Scholar
  57. 57.
    Kurmann MH (1990) Development of the pollen wall in Tsuga canadensis. (Pinaceae). Nord J Bot 10:63–78CrossRefGoogle Scholar
  58. 58.
    Rowley JR (1995) Are the endexines of pteridophytes, gymnosperms and angiosperms structurally equivalent? Rev Palaeobot Palynol 85:13–34CrossRefGoogle Scholar
  59. 59.
    Zavada MS, Gabarayeba N (1991) Comparative pollen wall development of Welwitschia mirabilis. and selected primitive angiosperms. Bull Torrey Bot Club 118:292–302CrossRefGoogle Scholar
  60. 60.
    Heslop-Harrison J (1963) An ultrastructural study of pollen wall ontogeny in Silene pendula. Grana 4:7–24CrossRefGoogle Scholar
  61. 61.
    Takahashi M (1989) Pattern determination of the exine in Caesalpinia japonic. (Leguminosae: Caesalpinioideae). Am J Bot 76:1615–1626CrossRefGoogle Scholar
  62. 62.
    Takahashi M (1993) Exine initiation and substructure in pollen of Caesalpinia japonic. (Leguminosae: Caesalpinioideae). Am J Bot 80:192–197CrossRefGoogle Scholar
  63. 63.
    Takahashi M (1995) Three-dimensional aspects of exine initiatiation and development in Lilium longiflorum. (Liliaceae). Am J Bot 82:847–854CrossRefGoogle Scholar
  64. 64.
    Takahashi M, Skvarla JJ (1991a) Exine pattern formation by plasma membrane in Bougainvillea spectabile. Willd. (Nyctaginaceae). Am J Bot 78:1063–1069CrossRefGoogle Scholar
  65. 65.
    Takahashi M, Skvarla JJ (1991b) Development of striate exine in Ipomopsis rubur. (Polemoniaceae). Am J Bot 78:1724–1731CrossRefGoogle Scholar
  66. 66.
    Hesse M (1995) Cytology and morphogenesis of pollen and spores. Prog Bot 56:33–55Google Scholar
  67. 67.
    Takahashi M, Kouchi J (1988) Ontogenetic development of spinous exine in Hibiscus syriacus. (Malvaceae). Am J Bot 75:1549–1558CrossRefGoogle Scholar
  68. 68.
    Takahshi M (1992) Development of spinous exine in Nuphar japonicum. De Candolle (Nymphaeaceae). Rev Palaeobot Palynol 75:317–322CrossRefGoogle Scholar
  69. 69.
    Rowley JR, Dahl AO, Sengupta S, Rowley JS (1981) A model of exine substructure based on dissection of pollen and spore exines. Palynology 5:107–152CrossRefGoogle Scholar
  70. 70.
    Rowley JR (1990) The fundamental structure of the pollen exine. Plant Syst Evol Suppl 5:13–29CrossRefGoogle Scholar
  71. 71.
    Brooks J, Shaw G (1968) Chemical structure of the exine of pollen walls and a new function for carotenoids in nature. Nature 219:532–533PubMedCrossRefGoogle Scholar
  72. 72.
    Crang EE, May G (1974) Evidence for silicon as a prevalent elemental component in pollen wall structure. Can J Bot 52:2171–2174CrossRefGoogle Scholar
  73. 73.
    Prahl AK, Rittscher M, Wiermann R (1986) New aspects of sporopollenin biosynthesis. In: Stumpf PF (ed) The biochemistry of plants—a comprehensive treaties. Springer, Berlin Heidelberg New York, pp 313–318Google Scholar
  74. 74.
    Prahl AK, Springstubbe H, Grumbach K, Wiermann R (1985) Studies on sporopollenin biosynthesis: the effect of inhibitiors of carotenoid biosynthesis on sporopollenin accumulation. Z Naturforschung 40:621–626Google Scholar
  75. 75.
    Schulze OK, Wiermann R (1987) Phenols as investigated compounds of sporopollenin from Pinus. pollen. J Plant Physiol 131:5–15CrossRefGoogle Scholar
  76. 76.
    Herminghaus S, Arendt S, Gubatz S, Rittscher M, Wiermann R (1988) Aspects of sporopollenin biosynthesis: phenols as integrated compounds of the biopolymer. In: Cresti M, Gori P, Pacini E (eds) Sexual reproduction in higher plants. Springer, Berlin Heidelberg New York, pp 169–174CrossRefGoogle Scholar
  77. 77.
    Kawase M, Takahashi M (1996) Gas chromatography-mass spectrometric analysis of oxidative degradation products of sporopollnin in Magnolia grandiflor. (Magnoliaceae) and Hibiscus syriacus. (Malvaceae). J Plant Res 109:297–299CrossRefGoogle Scholar
  78. 78.
    Crane PR (1985) Phylogenetic analysis of seed plants and the origin of angiosperms. Ann Missouri Bot Gard 72:716–793CrossRefGoogle Scholar
  79. 79.
    Crane PR, Friis EM, Pedersen KR (1995) The origin and early diversification of angiosperms. Nature 374:27–33CrossRefGoogle Scholar
  80. 80.
    Doyle JA, Donoghue MJ (1986) Seed plant phylogeny and the origin of angiosperms: an experimental cladistic approach. Bot Rev 52:321–431CrossRefGoogle Scholar
  81. 81.
    Doyle JA and Donoghue MJ (1993) Phylogenies and angiosperm diversification. Paleobiology 19:141–167Google Scholar
  82. 82.
    Cornet B (1979) Angiosperm-like pollen with tectate-columellate wall structure from the Upper Triassic (and Jurassic) of the Newark Supergroup, USA. Palynology 3:281–282Google Scholar
  83. 83.
    Cornet B (1989) Late Triassic angiosperm-like pollen from the Richmond rift basin of Virginia, USA. Palaeontographica 213b:37–89Google Scholar
  84. 84.
    Doyle JA, Hotton CL (1991) Diversification of early angiosperm pollen. In: Blackmore S, Barnes SH (eds) Pollen and spores: patterns of diveristy, 169–95. Syst Assoc Spec vol 44, Clarendon, Oxford, pp 169–195Google Scholar
  85. 85.
    Crane PR (1987) Vegetational consequences of angiopserm diversification. In: Friis EM, Chaloner WG, Crane PR (eds) The orgins of angiosperms and their biological consequences. Cambridge University Press, Cambridge, pp 107–144Google Scholar
  86. 86.
    Traverse A (1988) Paleopalynology, Unwin Hyman, BostonGoogle Scholar
  87. 87.
    Crane PR, Lidgard S (1989) Angiosperm diversification and paleolatitudinal gradients in Cretaceous floristic diversity. Science 246:675–678PubMedCrossRefGoogle Scholar
  88. 88.
    Doyle JA (1969) Cretaceous angiosperm pollen of the Atlantic Coastal Plain and its evolutionary significance. J Arnold Arbor 50:1–35Google Scholar
  89. 89.
    Muller J (1970) Palynological evidence on early differentiation of angiosperms. Biol Rev 45:417–450CrossRefGoogle Scholar
  90. 90.
    Ward, JW, Doyle JA, Hotton CL (1989) Probable granular magnoliid angiosperm pollen from the Early Cretaceous. Pollen Spores 33:101–120Google Scholar
  91. 91.
    Walker JW, Walker AG (1984) Ultrastructure of Lower Cretaceous angiosperm pollen and the origin and early evolution of flowering plants. Ann Missouri Bot Gard 71:464–521CrossRefGoogle Scholar
  92. 92.
    Taylor DW, Hickey LJ (1992) Phylogenetic evidence for the herbaceous origin of angiosperms. P1 Syst Ecol 180:137–156Google Scholar
  93. 93.
    Donoghue MJ, Doyle JA (1989) Phylogenetic analysis of the angiosperms and the relationships of the “Hamamelidae”. In: Crane PR, Blackmore S (eds) Evolution, systematics and fossil history of the Hamamelidae, I. Introduction and “Lower” Hamamelidae. Clarendon, Oxford, pp 17–45Google Scholar
  94. 94.
    Crane PR, Herendeen PS (1996) Cretaceous floras containing angiosperm flowers andfruits from eastern North America. Rev Paleobot Palynol 90:319–337CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1997

Authors and Affiliations

  • Masamichi Takahashi
    • 1
  1. 1.Department of Biology, Faculty of EducationKagawa UniversityTakamatsu 760Japan

Personalised recommendations