Molecular Phylogenetic Relationships Among Angiosperms: An Overview Based on rbcL and 18S rDNA Sequences

  • Douglas E. Soltis
  • Carola Hibsch-Jetter
  • Pamela S. Soltis
  • Mark W. Chase
  • James S. Farris


During only the past 4 years, two large data sets of DNA sequences have greatly clarified the broad picture of angiosperm relationships and evolution. By far the more extensive of these two data sets is that based on the chloroplast gene rbcL, with sequences representing 499 species of seed plants [1]. More recently, a smaller data set representing 223 angiosperms has been compiled for the nuclear 18S ribosomal RNA gene [2]. The general structural features, rate of evolution, and phylogenetic utility of both genes have been previously reviewed [3,4] and are not discussed here. For the first time, species representing the diversity of angiosperms have been sequenced for both a chloroplast and a nuclear gene. Visual inspection of the rbcL and 18S rDNA topologies suggests a high degree of overall concordance. Particularly noteworthy is the support provided by the 18S rDNA topology for those nontraditional relationships suggested by the rbcL trees. For example, 18S rDNA sequence analysis confirms the rbcL-based inferences that Droseraceae and Nepenthaceae are closely related to the Caryophyllidae and that a number of members of Rosidae and Dilleniidae have as their closest relatives members of Asteridae.


Angiosperm Phylogeny rDNA Data Jackknife Analysis Jackknife Support Parsimony Search 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chase MW, Soltis DE, Olmstead RG, Morgan D, Les DH, Mishler BD, Duvall MR, Price RA, Hills HG, Qiu Y-L, Kron KA, Rettig JH, Conti E, Palmer JD, Manhart JR, Sytsma KJ, Michaels HJ, Kress WJ, Karol KG, Clark WD, Hedrén M, Gaut BS, Jansen RK, Kim K-J, Wimpee CF, Smith JF, Furnier GR, Strauss SH, Xiang Q-Y, Plunkett GM, Soltis PS, Swensen S, Williams SE, Gadek PA, Quinn CJ, Eguiarte LE, Golenberg E, Learn GH Jr, Graham SW, Barrett SCH, Dayanandan S, Albert VA (1993) Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Ann MO Bot Gard 80:528–580CrossRefGoogle Scholar
  2. 2.
    Soltis DE, Soltis PS, Nickrent DL, Johnson LA, Hahn WJ, Hoot SB, Sweere JA, Kuzoff RK, Kron KA, Chase MW, Swensen SM, Zimmer EA, Chaw S-M, Gillespie LJ, Kress WJ, Sytsma KJ (1997) Angiosperm phylogeny inferred from 18S ribosomal DNA sequences. Ann MO Bot Gard 84:1–49CrossRefGoogle Scholar
  3. 3.
    Palmer JD, Jansen RK, Michaels HJ, Chase MW, Manhart JR (1988) Chloroplast DNA variation and plant phylogeny. Ann MO Bot Gard 75:1180–1206CrossRefGoogle Scholar
  4. 4.
    Nickrent DL, Soltis DE (1995) A comparison of angiosperm phylogenies from nuclear 18S rDNA and rbcL sequences. Ann MO Bot Gard 82:208–234CrossRefGoogle Scholar
  5. 5.
    Farris JS, Albert VA, Källersjö M, Lipscomb D, Kluge AG (1997) Parsimony jackknifing outperforms neighbor-joining. Cladistics 12:99–124CrossRefGoogle Scholar
  6. 6.
    Donoghue MJ, Doyle JA (1989) Phylogenetic analysis of angiosperms and the relationships of Hamamelidae. In: Crane PR, Blackmore S (eds) Evolution, systematics and fossil history of the Hamamelidae. Clarendon, Oxford, pp 17–45Google Scholar
  7. 7.
    Donoghue MJ, Doyle JA (1989) Phylogenetic studies of seed plants and angiosperms based on morphological characters. In: Fernholm B, Bremer K, Jornvall H (eds) The hierarchy of life: molecules and morphology in phylogenetic analysis. Elsevier, Amsterdam, pp 181–193Google Scholar
  8. 8.
    Doyle JA, Hotton CL (1991) Diversification of early angiosperm pollen in a cladistic context. In: Blackmore S, Barnes SH (eds) Pollen and spores. Clarendon, Oxford, pp 169–195Google Scholar
  9. 9.
    Doyle JA, Hotton CL, Ward JV (1990) Early Cretaceous tetrads, zonasulculate pollen, and Winteraceae. II. Cladistic analysis and implications. Am J Bot 77:1558–1568CrossRefGoogle Scholar
  10. 10.
    Cronquist A (1981) An integrated system of classification of flowering plants. Columbia University Press, New YorkGoogle Scholar
  11. 11.
    De Candolle A (1873) Prodromus systematis naturalis regni vegetabilis, vol 17, ParisGoogle Scholar
  12. 12.
    Hufford L (1992) Rosidae and their relationships to other nonmagnoliid dicotyledons: a phylogenetic analysis using morphological and chemical data. Ann MO Bot Gard 79:218–248CrossRefGoogle Scholar
  13. 13.
    Olmstead RG, Bremer B, Scott KM, Palmer JD (1993) A parsimony analysis of the Asteridae sensu lato based on rbcL sequences. Ann MO Bot Gard 80:700–722CrossRefGoogle Scholar
  14. 14.
    Soltis DE, Soltis PS (1997) Phylogenetic relationships among Saxifragaceae sensu lato: a comparison of topologies based on 18S rDNA and rbcL sequences. Am J Bot 84:504–522PubMedCrossRefGoogle Scholar
  15. 15.
    Hoot SB, Crane PR (1995) Inter-familial relationships in the Ranunculidae based on molecular systematics. Plant Syst Evol 9:119–131Google Scholar
  16. 16.
    Endress PK (1994) Floral structure and evolution of primitive angiosperms: recent advances. Plant Syst Evol 192:79–97CrossRefGoogle Scholar
  17. 17.
    Cronquist A (1968) The evolution and classification of flowering plants. Houghton Mifflin, BostonGoogle Scholar
  18. 18.
    Hoot SB, Culham A, Crane PR (1995) Phylogenetic relationships of the Lardizabalaceae and Sargentodoxaceae: chloroplast and nuclear DNA sequence evidence. Plant Syst Evol 9:195–199Google Scholar
  19. 19.
    Thorne RF (1992) An updated classification of the flowering plants. Aliso 13:365–389Google Scholar
  20. 20.
    Dahlgren RT (1980) A revised system of classification of the angiosperms. Bot J Linn Soc 80: 91–124CrossRefGoogle Scholar
  21. 21.
    Rodman JE (1991) A taxonomic analysis of glucosinolate-producing plants. Part 1. Phenetics. Syst Bot 16:598–618CrossRefGoogle Scholar
  22. 22.
    Rodman JE (1991) A taxonomic analysis of glucosinolate-producing plants. Part 2. Cladistics. Syst Bot 16:619–629Google Scholar
  23. 23.
    Rodman JE, Price RA, Karol K, Conti E, Sytsma KJ, Palmer JD (1993) Nucleotide sequences of the rbcL gene indicate monophyly of mustard oil plants. Ann MO Bot Gard 80:686–699CrossRefGoogle Scholar
  24. 24.
    Morgan DR, Soltis DE (1993) Phylogenetic relationships among members of Saxifragaceae sensu lato based on rbcL sequence data. Ann MO Bot Gard 80:631–660CrossRefGoogle Scholar
  25. 25.
    Soltis DE, Soltis PS, Morgan DR, Swensen SM, Mullin BC, Dowd JM, Martin PG (1995) Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms. Proc Natl Acad Sci USA 92:2647–2651PubMedCrossRefGoogle Scholar
  26. 26.
    Nickrent DL, Franchina CR (1990) Phylogenetic relationships of the Santalales and relatives. J Mol Evol 31:294–301PubMedCrossRefGoogle Scholar
  27. 27.
    Takhtajan A (1987) System of Magnoliophyta. Academy of Sciences of the USSR, LeningradGoogle Scholar
  28. 28.
    Hufford L, Dickison WC (1992) A phylogenetic analysis of Cunoniaceae. Syst Bot 17:181–200CrossRefGoogle Scholar
  29. 29.
    Kluge AG (1989) A concern for evidence and a phylogenetic hypothesis of relationships among Epicrates (Boidae, Serpentes). Syst Zool 38:7–25CrossRefGoogle Scholar
  30. 30.
    De Queiroz A, Donoghue MJ, Kim J (1995) Separate versus combined analysis of phylogenetic evidence. Annu Rev Ecol Syst 26:657–681CrossRefGoogle Scholar
  31. 31.
    Miyamoto MM, Fitch WM (1995) Testing species phylogenies and phylogenetic methods with congruence. Syst Biol 44:64–76Google Scholar
  32. 32.
    Farris JS, Källersjö M, Kluge AG, Bult C (1995) Testing significance of incongruence. Cladistics 10:315–319CrossRefGoogle Scholar
  33. 33.
    Lanyon SM (1993) Phylogenetic frameworks: towards a firmer foundation for the comparative approach. Biol J Linn Soc 49:45–61CrossRefGoogle Scholar
  34. 34.
    Rodrigo AG, Kelly-Borges M, Berquist PR, Berquist PL (1993) A randomization test of the null hypothesis that two cladograms are sample estimates of a parametric phylogenetic tree. N Z J Bot 31: 257–268CrossRefGoogle Scholar
  35. 35.
    Bull JJ, Huelsenbeck JP, Cunningham CW, Swofford DL, Waddell PJ (1993) Partitioning and combining data in phylogenetic analysis. Syst Biol 42:384–397Google Scholar
  36. 36.
    Mickevich MF, Farris JS (1981) The implications of congruence in Menidia. Syst Zool 30:351–370CrossRefGoogle Scholar
  37. 37.
    Lutzoni F, Vilgalys R (1995) Integration of morphological and molecular data sets in estimating fungal phylogenies. Can J Bot 73:S649–S659CrossRefGoogle Scholar
  38. 38.
    Huelsenbeck JP, Bull JJ, Cunningham CW (1996) Combining data in phylogenetic analysis. Trends Ecol Evol 11:152–158PubMedCrossRefGoogle Scholar
  39. 39.
    Swofford DL (1991) When are phylogeny estimates incongruent? In: Miyamoto MM, Cracraft J (eds) Phylogenetic analysis of DNA sequences. Oxford University Press, New YorkGoogle Scholar
  40. 40.
    Bremer K (1988) The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42:795–803CrossRefGoogle Scholar
  41. 41.
    Donoghue MJ, Olmstead RG, Smith JF, Palmer JD (1992) Phylogenetic relationships of Dipsacales based on rbcL sequences. Ann MO Bot Gard 79:333–345CrossRefGoogle Scholar
  42. 42.
    Penny D, Hendy MD (1986) Estimating the reliability of evolutionary trees. Mol Biol Evol 3:403–417PubMedGoogle Scholar
  43. 43.
    Kron KA (1996) Phylogenetic relationships of Empetraceae, Epacridaceae, and Ericaceae: evidence from nuclear ribosomal 18S sequence data. Ann Bot (Lond) 77:293–303CrossRefGoogle Scholar
  44. 44.
    Olmstead RG, Sweere JA (1994) Combining data in phylogenetic systematics: an empirical approach using three molecular data sets in the Solanaceae. Syst Biol 43:467–481CrossRefGoogle Scholar
  45. 45.
    Soltis DE, Kuzoff RK, Conti E, Gornall R, Ferguson K (1996) matK and rbcL gene sequence data indicate that Saxifraga (Saxifragaceae) is polyphyletic. Am J Bot 83:371–382CrossRefGoogle Scholar
  46. 46.
    Hillis DM (1996) Inferring complex phylogenies. Nature 383:130PubMedCrossRefGoogle Scholar
  47. 46.
    Hillis DM, Huelsenbeck JP, Swofford DL (1994) Hobgoblin of phylogenetics? Nature 369:363–364PubMedCrossRefGoogle Scholar
  48. 47.
    Hillis DM (1995) Approaches for assessing phylogenetic accuracy. Syst Biol 44:3–16Google Scholar
  49. 48.
    Patterson C, Williams DM, Humphries DJ (1993) Congruence between molecular and morphological phylogenies. Annu Rev Ecol Syst 24:153–188CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1997

Authors and Affiliations

  • Douglas E. Soltis
    • 1
  • Carola Hibsch-Jetter
    • 1
  • Pamela S. Soltis
    • 1
  • Mark W. Chase
    • 2
  • James S. Farris
    • 3
  1. 1.Department of BotanyWashington State UniversityPullmanUSA
  2. 2.Laboratory of Molecular SystematicsRichmond, SurreyUK
  3. 3.Molekylärsystematiska LaboratorietNaturhistoriska RiksmusectStockholmSweden

Personalised recommendations