Evolutionary Biology of Flowers: Prospects for the Next Century

  • Peter K. Endress


There are perhaps no other things as deeply ingrained in the needs of mankind as flowers. The Romans summed it up two millennia ago with their slogan “panem et circenses” or “food and pleasure.” Our main sources of food are flowers in the form of their final stage, the fruits and seeds, such as wheat, rice, or corn, but flowers are also an unending source of pleasure with their exciting forms, colors and scents in an often ephemeral display. The manifold forms of flowers and their various interactions with animals are also the epitomy of biodiversity on our planet. The short lifespan of flowers and their vanishing diversity strike emotional chords. Both the food and pleasure aspects of flowers are heavily and increasingly involved in industrial activities including biotechnology. On all these grounds the development, and, in a broader context, the evolution of flowers in their diversity and complexity will inevitably remain one of the central fields of biology.


Pollen Tube Pollen Tube Growth Pollen Tube Guidance Primitive Angiosperm Angiosperm Flower 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O’Hara RJ (1988) Homage to Clio, or, toward an historical philosophy for evolutionary biology. Syst Zool 37:142–155Google Scholar
  2. 2.
    Donoghue MJ, Sanderson MJ (1992) The suitability of molecular and morphological evidence in reconstructing plant phylogeny. In: Soltis PS, Soltis DE, Doyle JJ (eds) Molecular systematics of plants. Chapman & Hall, New York, pp 340–368Google Scholar
  3. 3.
    Baum DA (1995) The comparative pollination and floral biology of baobabs (Adansonia-Bombacaceae). Ann Missouri Bot Gard 82:322–348Google Scholar
  4. 4.
    Armbruster WS (1994) Evolution of plant pollination systems: Hypotheses and tests with the neotropical vine Dalechampia. Evolution 47:1480–1505Google Scholar
  5. 5.
    Armbruster WS (1996) Evolution of floral morphology and function: an integrative approach to adaptation, constraint, and compromise in Dalechampia (Euphorbiace-ae). In: Lloyd DG, Barrett SCH (eds) Floral biology. Studies on floral evolution in animal-pollinated plants. Chapman & Hall, New York, pp 241–272Google Scholar
  6. 6.
    Goldblatt P, Manning JC, Bernhardt P (1995) Pollination biology of Lapeirousia subgenus Lapeirousia (Iridaceae) in southern Africa; floral divergence and adaptation for long-tongued fly pollination. Ann Missouri Bot Gard 82:517–534Google Scholar
  7. 7.
    Manning JC, Goldblatt P (1996) The Prosoeca peringueyi (Diptera: Nemestrinidae) pollination guild in southern Africa: long-tongued flies and their tubular flowers. Ann Missouri Bot Gard 83:67–86Google Scholar
  8. 8.
    Luckow M, Hopkins HCF (1995) A cladistic analysis of Parkia (Leguminosae: Mi-mosoideae). Am J Bot 82:1300–1320Google Scholar
  9. 9.
    Tucker SC, Douglas AW (1994) Ontogenetic evidence and phylogenetic relationships among basal taxa of legumes. In: Ferguson IK, Tucker SC (eds) Advances in legume systematics 6: structural botany. Royal Botanic Gardens, Kew, pp 11–32Google Scholar
  10. 10.
    Tucker SC, Douglas AW (1996) Floral structure, development, and relationships of paleoherbs: Saruma, Cabomba, Lactoris, and selected Piperales. In: Taylor DW, Hickey LJ (eds) Flowering plant origin, evolution and phylogeny. Chapman & Hall, New York, pp 141–175Google Scholar
  11. 11.
    Hufford L (1990) Androecial development and the problem of monophyly of Loasaceae. Can J Bot 68: 402–419Google Scholar
  12. 12.
    Hufford L (1995) Patterns of ontogenetic evolution in perianth diversification of Besseya (Scrophulariaceae). Am J Bot 82:655–680Google Scholar
  13. 13.
    Vogel S (1989) Fettes Oel als Lockmittel. Erforschung der ölbietenden Blumen und ihrer Bestäuber. Akademie der Wissenschaften und der Literatur 1949–1989, 113 – 130. Steiner, StuttgartGoogle Scholar
  14. 14.
    Biedinger N, Barthlott W (1993) Untersuchungen zur Ultraviolettreflexion von Angiospermenblüten I. Monocotyledoneae. Trop Subtrop Pflanzenwelt 86:1–122Google Scholar
  15. 15.
    Burr B, Barthlott W (1993) Untersuchungen zur Ultraviolettreflexion von Angiospermenblüten II. Magnoliidae, Ranunculidae, Hamamelididae, Caryophyllidae, Rosidae. Trop Subtrop Pflanzenwelt 87:1–193Google Scholar
  16. 16.
    Burr B, Rosen D, Barthlott W (1995) Untersuchungen zur Ultraviolettreflexion von Angiospermenblüten III. Dilleniidae und Asteridae s.l. Trop Subtrop Pflanzenwelt 93:1–185Google Scholar
  17. 17.
    Weiss MR (1995) Floral color change: a widespread functional convergence. Am J Bot 82:167–185Google Scholar
  18. 18.
    Yeo PF (1993) Secondary pollen presentation. Pl Syst Evol, Suppl 6, 1–268Google Scholar
  19. 19.
    Erbar C (1991) Sympetaly—a systematic character? Bot Jahrb Syst 112:417–451Google Scholar
  20. 20.
    Ronse Decraene LP, Smets EF (1993) The distribution and systematic relevance of the androecial character polymery. Bot J Linn Soc 113:285–350Google Scholar
  21. 21.
    Ronse Decraene LP, Smets EF (1995) The distribution and systematic relevance of the androecial character oligomery. Bot J Linn Soc 118:193–247Google Scholar
  22. 22.
    Pellmyr O (1992a) Evolution of insect pollination and angiosperm diversification. Trends Ecol Evol 7:46–49PubMedGoogle Scholar
  23. 23.
    Pellmyr O (1992b) The phylogeny of a mutualism: evolution and co-adaptation between Trollius and its seed-parasitic pollinators. Biol J Linn Soc 47:337–365Google Scholar
  24. 24.
    Pellmyr O, Thompson JN (1992) Multiple occurrences of mutualism in the yucca moth lineage. Proc Natl Acad Sci USA 89:2927–2929PubMedGoogle Scholar
  25. 25.
    Pellmyr O, Huth CJ (1994) Evolutionary stability of mutualism between yuccas and yucca moths. Nature 372:257–260Google Scholar
  26. 26.
    Pellmyr O, Leebens-Mack J, Huth, CJ (1996) Non-mutualistic yucca moths and their evolutionary consequences. Nature 380:155–156PubMedGoogle Scholar
  27. 27.
    Thompson JN (1994) The coevolutionary process. University of Chicago Press, ChicagoGoogle Scholar
  28. 28.
    Bogler DJ, Neff JL, Simpson BB (1995) Multiple origins of the yucca-yucca moth association. Proc Natl Acad Sci USA 92:6864–6867PubMedGoogle Scholar
  29. 29.
    Halevy AH (ed) (1985–1989) CRC handbook of flowering, vol I–VI. CRC Press, Boca RatonGoogle Scholar
  30. 30.
    Kubitzki K (ed) (1993) The families and genera of vascular plants, Vol. II. Springer, BerlinGoogle Scholar
  31. 31.
    Taylor DW, Hickey LJ (1992) Phylogenetic evidence for the herbaceous origin of angiosperms. Pl Syst Evol 180:137–156Google Scholar
  32. 32.
    Crane PR, Friis EM, Pedersen KR (1994) Palaeobotanical evidence on the early radiation of magnoliid angiosperms. Pl Syst Evol, Suppl 8, 51–72Google Scholar
  33. 33.
    Crane PR, Friis EM, Pedersen KR (1995) The origin and early diversification of angiosperms. Nature 374:27–33Google Scholar
  34. 34.
    Friis EM, Pedersen KR, Crane PR (1994) Angiosperm floral structures from the Early Cretaceous of Portugal. Pl Syst Evol, Suppl 8, 31–49Google Scholar
  35. 35.
    Friis EM, Pedersen KR, Crane PR (1995) Appomattoxia ancistrophora gen. et sp. nov., a new Early Cretaceous plant with similarities to Circaeaster and extant Magnoliidae. Am J Bot 82:933–943Google Scholar
  36. 36.
    Leroy J-F (1993) Origine et evolution des plantes a fleurs. Masson, ParisGoogle Scholar
  37. 37.
    Hickey LJ, Taylor DW (1996) Origin of the angiosperm flower. In: Taylor DW, Hickey LJ (ed) Flowering plant origin, evolution and phylogeny. Chapman & Hall, New York, pp 176–231Google Scholar
  38. 38.
    Endress PK (1994a) Diversity and evolutionary biology of tropical flowers. Cambridge University Press, CambridgeGoogle Scholar
  39. 39.
    Endress PK (1994b) Floral structure and evolution of primitive angiosperms: recent advances. Pl Syst Evol 192:79–97Google Scholar
  40. 40.
    Doyle JA, Donoghue MJ (1993) Phylogenies and angiosperm diversification. Paleobiology 19:141–167Google Scholar
  41. 41.
    Lloyd DG, Wells MS (1992) Reproductive biology of a primitive angiosperm, Pseudowintera colorata (Winteraceae), and the evolution of pollination systems in the Anthophyta. Pl Syst Evol 181:77–95Google Scholar
  42. 42.
    Kato M, Inoue T, Nagamitsu T (1995) Pollination biology of Gnetum (Gnetaceae) in a lowland mixed dipterocarp forest in Sarawak. Am J Bot 82:862–868Google Scholar
  43. 43.
    Fraser NC, Grimaldi DA, Olsen PE, Axsmith B (1996) A Triassic Lagerstätte from eastern North America. Nature 380:615–619Google Scholar
  44. 44.
    Cornet B (1993) Dicot-like leaf and flowers from the Late Triassic tropical Newark Supergroup rift zone, U.S.A. Mod Geol 19:81–99Google Scholar
  45. 45.
    Mulcahy DL (1979) The rise of the angiosperms: a genecological factor. Science 206:20–23PubMedGoogle Scholar
  46. 46.
    Takhtajan A (1976) Neoteny and the origin of flowering plants. In: Beck CB (ed) Origin and early evolution of angiosperms. Columbia University Press, New York, pp 207–219Google Scholar
  47. 47.
    Doyle JA, Hickey LJ (1976) Pollen and leaves from the mid- Cretaceous Potomac Group and their bearing on early angiosperm evolution. In: Beck CB (ed) Origin and early evolution of angiosperms. Columbia University Press, New York, pp 139–206Google Scholar
  48. 48.
    Sanderson MJ, Donoghue MJ (1994) Shifts in diversification rate with the origin of angiosperms. Science 264:1590–1593PubMedGoogle Scholar
  49. 49.
    Regal PJ (1977) Ecology and evolution of flowering plant dominance. Science 196:622–629PubMedGoogle Scholar
  50. 50.
    Ericksson O, Bremer B (1992) Pollination systems, dispersal modes, life forms, and diversification rates in angiosperm families. Evolution 46:258–266Google Scholar
  51. 51.
    Bawa KS (1995) Pollination, seed dispersal and diversification of angiosperms. Trends Ecol Evol 10:311–312PubMedGoogle Scholar
  52. 52.
    Ricklefs RE, Renner SS (1994) Species richness within families of flowering plants. Evolution 48:1619–1636Google Scholar
  53. 53.
    Tiffney BH, Mazer SJ (1995) Angiosperm growth habit, dispersal and diversification reconsidered. Evol Ecol 9:93–117Google Scholar
  54. 54.
    Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37PubMedGoogle Scholar
  55. 55.
    Chase MW, Soltis DE, Olmstead RG, Morgan D, Les DH, Mishler BD, Duvall MR, Price RA, Hills HG, Qiu Y-L, Kron KA, Rettig JH, Conti E, Palmer JD, Manhart JR, Sytsma KJ, Michaels HJ, Kress WJ, Karol KG, Clark WD, Hedren M, Gaut BS, Jansen RK, Kim K-J, Wimpee CF, Smith JF, Furnier GR, Strauss SH, Xiang Q-Y, Plunkett GM, Soltis PS, Swensen SM, Williams SE, Gadek PA, Quinn CJ, Eguiarte LE, Golenberg E, Learn GH Jr, Graham SW, Barrett SCH, Dayanandan S, Albert VA (1993) Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Ann Missouri Bot Gard 80:528–580Google Scholar
  56. 56.
    Doyle JJ (1993) DNA, phylogeny, and the flowering of plant systematics. Bio Science 43:380–389Google Scholar
  57. 57.
    Sytsma KJ, Hahn WJ (1994) Molecular systematics: 1991–1993. Progr Bot 55:307–333Google Scholar
  58. 58.
    Meyerowitz EM (1995) The molecular genetics of pattern formation in flower development: a perspective after ten years of the Flowering Newsletter. Flow Newsl 20:4–12Google Scholar
  59. 59.
    Meyerowitz EM (1994a) The genetics of flower development. Sci Am 271(5):40–47Google Scholar
  60. 60.
    Meyerowitz EM (1994b) Flower development and evolution: new answers and new questions. Proc Natl Acad Sci USA 91:5735–5737PubMedGoogle Scholar
  61. 61.
    Yanofsky MF (1995) Floral meristems to floral organs: genes controlling early events in Arabidopsis flower development. Ann Rev Pl Physiol Pl Mol Biol 46:167–188Google Scholar
  62. 62.
    Doyle JA (1994) Origin of the angiosperm flower: a phylogenetic perspective. Pl Syst Evol, Suppl 8, 7–29Google Scholar
  63. 63.
    Doyle JJ (1994) Evolution of a plant homeotic multigene family: towards connecting molecular systematics and molecular developmental genetics. Syst Biol 43:307–328Google Scholar
  64. 64.
    Purugganan MD, Rounsley SD, Schmidt RJ, Yanofsky MF (1995) Molecular evolution of flower development: diversification of the plant MADS-box regulatory gene family. Genetics 140:345–356PubMedGoogle Scholar
  65. 65.
    Tandre K, Albert VA, Sundas A, Engström P (1995) Conifer homologues to genes that control floral development in angiosperms. Pl Mol Biol 27:69–78Google Scholar
  66. 66.
    Imaichi R, Kato M, Okada H (1995) Morphology of the outer integument in three primitive angiosperm families. Can J Bot 73:1242–1249Google Scholar
  67. 67.
    Robinson-Beers K, Pruitt RE, Gasser CS (1992) Ovule development in wild-type Arabidopsis and two female-sterile mutants. Pl Cell 4:1237–1249Google Scholar
  68. 68.
    Schneitz K, Hülskamp M, Pruitt RE (1995) Wild-type ovule development in Arabidopsis thaliana: a light microscope study of cleared whole-mount tissue. Pl J 7:731–749Google Scholar
  69. 69.
    Herr JM Jr (1995) The origin of the ovules. Am J Bot 82:547–564Google Scholar
  70. 70.
    Weigel D (1995) The genetics of flower development: from floral induction to ovule morphogenesis. Ann Rev Gen 29:19–39Google Scholar
  71. 71.
    Colombo L, Franken J, Koetje E, van Went J, Dons HJM, Angenent GC, van Tunen AJ (1995) The Petunia MADS box gene FBP11 determines ovule identity. Pl Cell 7:1859–1868Google Scholar
  72. 72.
    Chasan R (1995) Ovule origins. Pl Cell 7:1735–1737Google Scholar
  73. 73.
    Ray A, Robinson-Beers K, Ray S, Baker SC, Lang JD, Preuss D, Milligan SB, Gasser CS (1994) Arabidopsis floral homeotic gene BELL (BEL1) controls ovule development through negative regulation of AGAMOUS gene (AG). Proc Natl Acad Sci USA 91:5761–5765PubMedGoogle Scholar
  74. 74.
    Modrusan Z, Reiser L, Feldmann KA, Fischer RL, Haughn GW (1994) Homeotic transformation of ovules into carpel-like structures in Arabidopsis. Pl Cell 6:333–349Google Scholar
  75. 75.
    Klucher KM, Chow H, Reiser L, Fischer RL (1996) The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. Pl Cell 8:137–153Google Scholar
  76. 76.
    Elliott RC, Betzner AS, Huttner E, Oakes MP, Tucker WQJ, Gerentes D, Perez P, Smyth DR (1996) AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Pl Cell 8:155–168Google Scholar
  77. 77.
    Gaiser JC, Robinson-Beers K, Gasser CS (1995) The Arabidopsis SUPERMAN gene mediates asymmetric growth of the outer integument of ovules. Pl Cell 7:333–345Google Scholar
  78. 78.
    Stebbins GL (1971) Relationships between adaptive radiation, speciation and major evolutionary trends. Taxon 20:3–16Google Scholar
  79. 79.
    Riedl R (1978) Order in living organisms. A systems analysis of evolution. Wiley, ChichesterGoogle Scholar
  80. 80.
    Muller GB, Wagner GP (1991) Novelty in evolution: restructuring the concept. Ann Rev Ecol Syst 22:229–256Google Scholar
  81. 81.
    Baum DA, Larson A (1991) Adaptation reviewed: a phylogenetic methodology for studying character macroevolution. Syst Zool 40:1–18Google Scholar
  82. 82.
    Ghiselin MT (1995) Perspective:Darwin, progress, and economic principles. Evolution 49:1029–1037Google Scholar
  83. 83.
    Nickrent DL, Soltis DE (1995) A comparison of angiosperm phylogenies from nuclear 18S rDNA and rbcL sequences. Ann Missouri Bot Gard 82:208–234Google Scholar
  84. 84.
    Takaso T, Bouman F (1986) Ovule and seed ontogeny in Gnetum gnemon L. Bot Mag Tokyo 99:241–266Google Scholar
  85. 85.
    Serbet R, Rothwell GW (1995) Functional morphology and homologies of gymno-spermous ovules: evidence from a new species of Stephanospermum (Medullosales). Can J Bot 73:650–661Google Scholar
  86. 86.
    Taylor TN, Del Fueyo GM, Taylor EL (1994) Permineralized seed fern cupules from the Triassic of Antarctica: implications for cupule and carpel evolution. Am J Bot 81:666–677Google Scholar
  87. 87.
    Endress PK (1975) Nachbarliche Formbeziehungen mit Hüllfunktion im Infloreszenz- und Blütenbereich. Bot Jahrb Syst 96:1–44Google Scholar
  88. 88.
    Verbeke JA (1992) Fusion events during floral morphogenesis. Ann Rev Pl Physiol Mol Biol 43:583–598Google Scholar
  89. 89.
    van der Schoot C, Dietrich MA, Storms M, Verbeke JA, Lucas WJ (1995) Establishment of a cell-to-cell communication pathway between separate carpels during gyno-ecium development. Planta 195:450–455Google Scholar
  90. 90.
    Ciampolini F, Faleri C, Cresti M (1995) Structural and cytochemical analysis of the stigma and style in Tibouchina semidecandra Cogn. (Melastomataceae). Ann Bot 76:421–427Google Scholar
  91. 91.
    Heslop-Harrison Y (1981) Stigma characteristics and angiosperm taxonomy. Nord J Bot 1:401–420Google Scholar
  92. 92.
    Schill R, Baumm A, Wolter M (1985) Vergleichende Mikromorphologie der Narbenoberflächen bei den Angiospermen; Zusammenhange mit Pollenoberflächen bei heterostylen Sippen. Pl Syst Evol 148:185–214Google Scholar
  93. 93.
    Buzgó M (1994) Inflorescence development of Pistia stratiotes (Araceae). Bot Jahrb Syst 115:557–570Google Scholar
  94. 94.
    Endress PK (1982) Syncarpy and alternative modes of escaping disadvantages of apocarpy in primitive angiosperms. Taxon 31:48–52Google Scholar
  95. 95.
    van Heel WA (1983) The ascidiform early development of free carpels, a S.E.M.-investigation. Blumea 28:231–270Google Scholar
  96. 96.
    Sage TL, Williams EG (1995) Structure, ultrastructure, and histochemistry of the pollen tube pathway in the milkweed Asclepias exaltata L. Sex Pl Reprod 8:257–265Google Scholar
  97. 97.
    Gane AM, Clarke AE, Bacic A (1995) Localisation and expression of arabinogalactan-proteins in the ovaries of Nicotiana alata Link and Otto. Sex Pl Reprod 8:278–282Google Scholar
  98. 98.
    Cheung AY, Wang H, Wu H-M (1995) A floral transmitting tissue-specific glycoprotein attracts pollen tubes and stimulates their growth. Cell 82:383–393PubMedGoogle Scholar
  99. 99.
    Wang H, Wu H-M, Cheung AY (1993) Development and pollination regulated accumulation and glycosylation of a stylar transmitting tissue-specific proline-rich protein. Pl Cell 5:1639–1650Google Scholar
  100. 100.
    Lord EM, Sanders LC (1992) Roles for the extracellular matrix in plant development and pollination: a special case of cell movement in plants. Develop Biol 153:16–28PubMedGoogle Scholar
  101. 101.
    Sanders LC, Lord EM (1992) A dynamic role for the stylar matrix in pollen tube extension. Int Rev Cytol 140:297–318Google Scholar
  102. 102.
    Jauh GY, Lord EM (1995) Movement of the tube cell in the lily style in the absence of the pollen grain and the spent pollen tube. Sex Pl Reprod 8:168–172Google Scholar
  103. 103.
    Mascarenhas JP (1993) Molecular mechanisms of pollen tube growth and differentiation. Pl Cell 5:1303–1314Google Scholar
  104. 104.
    Hülskamp M, Schneitz K, Pruitt RE (1995) Genetic evidence for a long range activity that directs pollen tube guidance in Arabidopsis. Pl Cell 7:57–64Google Scholar
  105. 105.
    Sniezko R, Winiarczyk K (1995) Pollen tube growth in pistils of female-sterile plants of Oenothera mut. brevistylis. Protoplasma 187:31–38Google Scholar
  106. 106.
    Lolle SJ, Cheung AY, Sussex IM (1992) Fiddlehead: an Arabidopsis mutant consti-tutively expressing an organ fusion program that involves interactions between epidermal cells. Develop Biol 152:383–392PubMedGoogle Scholar
  107. 107.
    Lolle SJ, Cheung AY (1993) Promiscuous germination and growth of wildtype pollen from Arabidopsis and related species on the shoot of the Arabidopsis mutant, fiddlehead. Develop Biol 155:250–258PubMedGoogle Scholar
  108. 108.
    Lolle SJ, Hsu W, Kopczak S, Pruitt RE (1996) Genetic analysis of ontogenetic fusion in Arabidopsis. In: Knox RB, Singh MB (eds) Plant reproduction’96. School of Botany, University of Melbourne, p 28Google Scholar
  109. 109.
    Alvarez J, Heisler MGB, Atkinson A, Smyth DR (1996) Spatula: a gene involved in carpel fusion and the development of transmitting tract tissue in Arabidopsis thaliana. In: Knox RB, Singh MB (eds) Plant reproduction’96. School of Botany, University of Melbourne, p 86Google Scholar
  110. 110.
    Kandasamy MK, Nasrallah JB, Nasrallah ME (1994) Pollen-pistil interactions and developmental regulation of pollen tube growth in Arabidopsis. Development 120:3405–3418Google Scholar
  111. 111.
    Nasrallah JB, Nasrallah ME (1993) Pollen-stigma signaling in the sporophytic self-incompatibility response. Pl Cell 5:1325–1335Google Scholar
  112. 112.
    Clarke AE, Newbigin E (1993) Molecular aspects of self-incompatibility in flowering plants. Ann Rev Genet 27:257–279PubMedGoogle Scholar
  113. 113.
    Cheung AY (1995) Pollen-pistil interactions in compatible pollination. Proc Natl Acad Sci USA 92:3077–3080PubMedGoogle Scholar
  114. 114.
    Weiler SG, Donoghue MJ, Charlesworth D (1995) The evolution of self-incompatibility in flowering plants: a phylogenetic approach. Monogr Syst Bot Missouri Bot Gard 53:355–382Google Scholar
  115. 115.
    Olmstead RG (1989) The origin and function of self-incompatibility in flowering plants. Sex Pl Reprod 2:127–136Google Scholar
  116. 116.
    Mulcahy DL, Mulcahy GB, Searcy KB (1992) Evolutionary genetics of pollen competition. In: Wyatt R (ed) Ecology and evolution of plant reproduction. Chapman & Hall, New York, pp 25–36Google Scholar
  117. 117.
    Mulcahy DL, Mulcahy GB (1987) The effects of pollen tube competition. Am Sci 75:44–50Google Scholar
  118. 118.
    Walsh NE, Charlesworth D (1992) Evolutionary interpretation of differences in pollen tube growth rates. Quart Rev Biol 67:19–37Google Scholar
  119. 119.
    Endress PK (1987) Floral phyllotaxis and floral evolution. Bot Jahrb Syst 108:417–438Google Scholar
  120. 120.
    Endress PK (1990) Patterns of floral construction in ontogeny and phylogeny. Biol J Linn Soc 39:153–175Google Scholar
  121. 121.
    Endress PK (1996) Homoplasy in flowers. In: Sanderson MJ, Hufford L (eds) Homoplasy and the evolutionary process. Academic, Orlando, pp 303–325Google Scholar
  122. 122.
    Olmstead RG, Bremer B, Scott KM, Palmer JD (1993) A parsimony analysis of the Asteridae sensu lato based on rbcL sequences. Ann Missouri Bot Gard 80:700–722Google Scholar
  123. 123.
    Kron KA, Chase MW (1993) Systematics of the Ericaceae, Empetraceae, Epacri-daceae and related taxa based upon rbcL sequence data. Ann Missouri Bot Gard 80:735–741Google Scholar
  124. 124.
    Anderberg AA (1994) Phylogeny of the Empetraceae, with special emphasis on character evolution in the genus Empetrum. Syst Bot 19:35–46Google Scholar
  125. 125.
    Hempel AL, Reeves PA, Olmstead RG, Jansen RK (1995) Implications of rbcL sequence data for higher order relationships of the Loasaceae and the anomalous aquatic plant Hydrostachys (Hydrostachyaceae). Pl Syst Evol 194:25–37Google Scholar
  126. 126.
    Gustafsson MHG, Backlund A, Bremer B (1996) Phylogeny of the Asterales sensu lato based on rbcL sequences with particular reference to the Goodeniaceae. Pl Syst Evol 199:217–242Google Scholar
  127. 127.
    Hufford L (1988) The evolution of floral morphological diversity in Eucnide (Loasaceae): The implications of modes and timing of ontogenetic changes on phy-logenetic diversification. In: Leins P, Tucker SC, Endress PK (eds) Aspects of floral development. Cramer, Berlin, pp 103–119Google Scholar
  128. 128.
    Hufford L (1992) Rosidae and their relationships to other nonmagnoliid dicotyledons: a phylogenetic analysis using morphological and chemical data. Ann Missouri Bot Gard 79:218–248Google Scholar
  129. 129.
    Erbar C, Leins P (1988) Blütenentwicklungsgeschichtliche Studien an Aralia und Hedera (Araliaceae). Flora 180:391–406Google Scholar
  130. 130.
    Erbar C, Leins P (1996) An analysis of the early floral development of Pittosporum tobira (Thunb.) Aiton and some remarks on the systematic position of the family Pittosporaceae. Fedde Rep 106:463–473Google Scholar
  131. 131.
    Wagner G (1989) The origin of morphological characters and the biological basis of homology. Evolution 43:1157–1171Google Scholar
  132. 132.
    Galen C (1996) Rates of floral evolution: adaptation to bumblebee pollination in an alpine wildflower, Polemonium viscosum. Evolution 50:120–125Google Scholar
  133. 133.
    Carr DE, Fenster CB (1994) Levels of genetic variation and covariation for Mimulus (Scrophulariaceae) floral traits. Heredity 72:606–618Google Scholar
  134. 134.
    Fenster CB, Ritland K (1994) Evidence for natural selection on mating system in Mimulus (Scrophulariaceae). Int J Pl Sci 155:588–596Google Scholar
  135. 135.
    Bradshaw HD Jr, Wilbert SM, Otto KG, Schemske DW (1995) Genetic mapping of floral traits associated with reproductive isolation in monkeyflowers (Mimulus). Nature 376:762–765Google Scholar
  136. 136.
    von Goethe JW (1790) Versuch die Metamorphose der Pflanzen zu erklären. Ettinger, GothaGoogle Scholar
  137. 137.
    Sprengel CK (1793) Das entdeckte Geheimniss der Natur im Bau und in der Befruchtung der Blumen. Vieweg, BerlinGoogle Scholar
  138. 138.
    Donoghue MJ, Sanderson MJ (1992) The suitability of molecular and morphological evidence in reconstructing plant phylogeny. In: Soltis PS, Soltis DE, Doyle JJ (eds) Molecular systematics of plants. Chapman & Hall, New York, pp 340–368Google Scholar
  139. 139.
    Albert VA, Backlund A, Bremer K, Chase MW, Manhart JR, Mishler BD, Nixon KC (1994) Functional constraints and rbcL evidence for land plant phylogeny. Ann Missouri Bot Gard 81:534–567Google Scholar
  140. 140.
    Bremer K (1994) Branch support and tree stability. Cladistics 10:295–304Google Scholar
  141. 141.
    Donoghue MJ (1994) Progress and prospects in reconstructing plant phylogeny. Ann Missouri Bot Gard 81:405–418Google Scholar
  142. 142.
    Doyle JA, Donoghue MJ, Zimmer EA (1994) Integration of morphological and ribosomal RNA data on the origin of angiosperms. Ann Missouri Bot Gard 81:419–450Google Scholar
  143. 143.
    de Queiroz A, Donoghue MJ, Kim J (1995) Separate versus combined analysis of phylogenetic evidence. Ann Rev Ecol Syst 26:657–681Google Scholar
  144. 144.
    Sytsma KJ, Baum DA (1996) Molecular phylogenies and the diversification of angiosperms. In: Taylor DW, Hickey LJ (eds) Flowering plant origin, evolution and phylogeny. Chapman & Hall, New York, pp 314–340Google Scholar
  145. 145.
    Renner SS, Ricklefs RE (1905) Dioecy and its correlates in the flowering plants. Am J Bot 82:596–606Google Scholar
  146. 146.
    Barrett SCH, Harder LD (1996) Ecology and evolution of plant mating. Trends Ecol Evol 11:73–79PubMedGoogle Scholar
  147. 147.
    Endress PK (1992) Evolution and floral diversity: the phylogenetic surroundings of Arabidopsis and Antirrhinum. Int J Pl Sci 153:S106-S122Google Scholar
  148. 148.
    Price RA, Palmer JD, Al-Shehbaz IA (1994) Systematic relationships of Arabidopsis: a molecular perspective. In: Meyerowitz EM, Somerville CR (eds) Arabidopsis. Cold Spring Harbor Laboratory, New York, pp 7–19Google Scholar
  149. 149.
    Kellogg EA, Shaffer HB (1993) Model organisms in evolutionary studies. Syst Biol 42:409–414Google Scholar
  150. 150.
    Zimmer EA (1994) Perspectives on future applications of experimental biology to evolution. In: Schierwater B, Streit B, Wagner GP, DeSalle R (eds) Molecular ecology and evolution: approaches and applications. Birkhäuser, Basel, pp 607–616Google Scholar
  151. 151.
    Frankie GW, Vinson SB, Newstrom LE, Barthell JF, Haber WA, Frankie JK (1990) Plant phenology, pollination ecology, pollinator behaviour and conservation of pollinators in Neotropical dry forest. In: Bawa KS, Hadley M (eds) Reproductive ecology of tropical forest plants. UNESCO, Paris, pp 37–47Google Scholar
  152. 152.
    Prance GT (1991) Rates of loss of biological diversity: a global view. In: Spellerberg IF, Goldsmith FB, Morris MG (eds) The scientific management of temperate communities for conservation. Blackwell, London, pp 27–44Google Scholar
  153. 153.
    Vogel S, Westerkamp C (1991) Pollination: an integrating factor of biocenoses. In: Seitz A, Loeschke V (eds) Species conservation: a population-biological approach. Birkhäuser, Basel, pp 159–170Google Scholar
  154. 154.
    Wilson EO (1992) The diversity of life. Harvard University Press, CambridgeGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1997

Authors and Affiliations

  • Peter K. Endress
    • 1
  1. 1.Institute of Systematic BotanyUniversity of ZürichZürichSwitzerland

Personalised recommendations