Skip to main content

Evolutionary Biology of Flowers: Prospects for the Next Century

  • Chapter
Evolution and Diversification of Land Plants

Abstract

There are perhaps no other things as deeply ingrained in the needs of mankind as flowers. The Romans summed it up two millennia ago with their slogan “panem et circenses” or “food and pleasure.” Our main sources of food are flowers in the form of their final stage, the fruits and seeds, such as wheat, rice, or corn, but flowers are also an unending source of pleasure with their exciting forms, colors and scents in an often ephemeral display. The manifold forms of flowers and their various interactions with animals are also the epitomy of biodiversity on our planet. The short lifespan of flowers and their vanishing diversity strike emotional chords. Both the food and pleasure aspects of flowers are heavily and increasingly involved in industrial activities including biotechnology. On all these grounds the development, and, in a broader context, the evolution of flowers in their diversity and complexity will inevitably remain one of the central fields of biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O’Hara RJ (1988) Homage to Clio, or, toward an historical philosophy for evolutionary biology. Syst Zool 37:142–155

    Google Scholar 

  2. Donoghue MJ, Sanderson MJ (1992) The suitability of molecular and morphological evidence in reconstructing plant phylogeny. In: Soltis PS, Soltis DE, Doyle JJ (eds) Molecular systematics of plants. Chapman & Hall, New York, pp 340–368

    Google Scholar 

  3. Baum DA (1995) The comparative pollination and floral biology of baobabs (Adansonia-Bombacaceae). Ann Missouri Bot Gard 82:322–348

    Google Scholar 

  4. Armbruster WS (1994) Evolution of plant pollination systems: Hypotheses and tests with the neotropical vine Dalechampia. Evolution 47:1480–1505

    Google Scholar 

  5. Armbruster WS (1996) Evolution of floral morphology and function: an integrative approach to adaptation, constraint, and compromise in Dalechampia (Euphorbiace-ae). In: Lloyd DG, Barrett SCH (eds) Floral biology. Studies on floral evolution in animal-pollinated plants. Chapman & Hall, New York, pp 241–272

    Google Scholar 

  6. Goldblatt P, Manning JC, Bernhardt P (1995) Pollination biology of Lapeirousia subgenus Lapeirousia (Iridaceae) in southern Africa; floral divergence and adaptation for long-tongued fly pollination. Ann Missouri Bot Gard 82:517–534

    Google Scholar 

  7. Manning JC, Goldblatt P (1996) The Prosoeca peringueyi (Diptera: Nemestrinidae) pollination guild in southern Africa: long-tongued flies and their tubular flowers. Ann Missouri Bot Gard 83:67–86

    Google Scholar 

  8. Luckow M, Hopkins HCF (1995) A cladistic analysis of Parkia (Leguminosae: Mi-mosoideae). Am J Bot 82:1300–1320

    Google Scholar 

  9. Tucker SC, Douglas AW (1994) Ontogenetic evidence and phylogenetic relationships among basal taxa of legumes. In: Ferguson IK, Tucker SC (eds) Advances in legume systematics 6: structural botany. Royal Botanic Gardens, Kew, pp 11–32

    Google Scholar 

  10. Tucker SC, Douglas AW (1996) Floral structure, development, and relationships of paleoherbs: Saruma, Cabomba, Lactoris, and selected Piperales. In: Taylor DW, Hickey LJ (eds) Flowering plant origin, evolution and phylogeny. Chapman & Hall, New York, pp 141–175

    Google Scholar 

  11. Hufford L (1990) Androecial development and the problem of monophyly of Loasaceae. Can J Bot 68: 402–419

    Google Scholar 

  12. Hufford L (1995) Patterns of ontogenetic evolution in perianth diversification of Besseya (Scrophulariaceae). Am J Bot 82:655–680

    Google Scholar 

  13. Vogel S (1989) Fettes Oel als Lockmittel. Erforschung der ölbietenden Blumen und ihrer Bestäuber. Akademie der Wissenschaften und der Literatur 1949–1989, 113 – 130. Steiner, Stuttgart

    Google Scholar 

  14. Biedinger N, Barthlott W (1993) Untersuchungen zur Ultraviolettreflexion von Angiospermenblüten I. Monocotyledoneae. Trop Subtrop Pflanzenwelt 86:1–122

    Google Scholar 

  15. Burr B, Barthlott W (1993) Untersuchungen zur Ultraviolettreflexion von Angiospermenblüten II. Magnoliidae, Ranunculidae, Hamamelididae, Caryophyllidae, Rosidae. Trop Subtrop Pflanzenwelt 87:1–193

    Google Scholar 

  16. Burr B, Rosen D, Barthlott W (1995) Untersuchungen zur Ultraviolettreflexion von Angiospermenblüten III. Dilleniidae und Asteridae s.l. Trop Subtrop Pflanzenwelt 93:1–185

    Google Scholar 

  17. Weiss MR (1995) Floral color change: a widespread functional convergence. Am J Bot 82:167–185

    Google Scholar 

  18. Yeo PF (1993) Secondary pollen presentation. Pl Syst Evol, Suppl 6, 1–268

    Google Scholar 

  19. Erbar C (1991) Sympetaly—a systematic character? Bot Jahrb Syst 112:417–451

    Google Scholar 

  20. Ronse Decraene LP, Smets EF (1993) The distribution and systematic relevance of the androecial character polymery. Bot J Linn Soc 113:285–350

    Google Scholar 

  21. Ronse Decraene LP, Smets EF (1995) The distribution and systematic relevance of the androecial character oligomery. Bot J Linn Soc 118:193–247

    Google Scholar 

  22. Pellmyr O (1992a) Evolution of insect pollination and angiosperm diversification. Trends Ecol Evol 7:46–49

    PubMed  CAS  Google Scholar 

  23. Pellmyr O (1992b) The phylogeny of a mutualism: evolution and co-adaptation between Trollius and its seed-parasitic pollinators. Biol J Linn Soc 47:337–365

    Google Scholar 

  24. Pellmyr O, Thompson JN (1992) Multiple occurrences of mutualism in the yucca moth lineage. Proc Natl Acad Sci USA 89:2927–2929

    PubMed  CAS  Google Scholar 

  25. Pellmyr O, Huth CJ (1994) Evolutionary stability of mutualism between yuccas and yucca moths. Nature 372:257–260

    CAS  Google Scholar 

  26. Pellmyr O, Leebens-Mack J, Huth, CJ (1996) Non-mutualistic yucca moths and their evolutionary consequences. Nature 380:155–156

    PubMed  CAS  Google Scholar 

  27. Thompson JN (1994) The coevolutionary process. University of Chicago Press, Chicago

    Google Scholar 

  28. Bogler DJ, Neff JL, Simpson BB (1995) Multiple origins of the yucca-yucca moth association. Proc Natl Acad Sci USA 92:6864–6867

    PubMed  CAS  Google Scholar 

  29. Halevy AH (ed) (1985–1989) CRC handbook of flowering, vol I–VI. CRC Press, Boca Raton

    Google Scholar 

  30. Kubitzki K (ed) (1993) The families and genera of vascular plants, Vol. II. Springer, Berlin

    Google Scholar 

  31. Taylor DW, Hickey LJ (1992) Phylogenetic evidence for the herbaceous origin of angiosperms. Pl Syst Evol 180:137–156

    Google Scholar 

  32. Crane PR, Friis EM, Pedersen KR (1994) Palaeobotanical evidence on the early radiation of magnoliid angiosperms. Pl Syst Evol, Suppl 8, 51–72

    Google Scholar 

  33. Crane PR, Friis EM, Pedersen KR (1995) The origin and early diversification of angiosperms. Nature 374:27–33

    CAS  Google Scholar 

  34. Friis EM, Pedersen KR, Crane PR (1994) Angiosperm floral structures from the Early Cretaceous of Portugal. Pl Syst Evol, Suppl 8, 31–49

    Google Scholar 

  35. Friis EM, Pedersen KR, Crane PR (1995) Appomattoxia ancistrophora gen. et sp. nov., a new Early Cretaceous plant with similarities to Circaeaster and extant Magnoliidae. Am J Bot 82:933–943

    Google Scholar 

  36. Leroy J-F (1993) Origine et evolution des plantes a fleurs. Masson, Paris

    Google Scholar 

  37. Hickey LJ, Taylor DW (1996) Origin of the angiosperm flower. In: Taylor DW, Hickey LJ (ed) Flowering plant origin, evolution and phylogeny. Chapman & Hall, New York, pp 176–231

    Google Scholar 

  38. Endress PK (1994a) Diversity and evolutionary biology of tropical flowers. Cambridge University Press, Cambridge

    Google Scholar 

  39. Endress PK (1994b) Floral structure and evolution of primitive angiosperms: recent advances. Pl Syst Evol 192:79–97

    Google Scholar 

  40. Doyle JA, Donoghue MJ (1993) Phylogenies and angiosperm diversification. Paleobiology 19:141–167

    Google Scholar 

  41. Lloyd DG, Wells MS (1992) Reproductive biology of a primitive angiosperm, Pseudowintera colorata (Winteraceae), and the evolution of pollination systems in the Anthophyta. Pl Syst Evol 181:77–95

    Google Scholar 

  42. Kato M, Inoue T, Nagamitsu T (1995) Pollination biology of Gnetum (Gnetaceae) in a lowland mixed dipterocarp forest in Sarawak. Am J Bot 82:862–868

    Google Scholar 

  43. Fraser NC, Grimaldi DA, Olsen PE, Axsmith B (1996) A Triassic Lagerstätte from eastern North America. Nature 380:615–619

    CAS  Google Scholar 

  44. Cornet B (1993) Dicot-like leaf and flowers from the Late Triassic tropical Newark Supergroup rift zone, U.S.A. Mod Geol 19:81–99

    Google Scholar 

  45. Mulcahy DL (1979) The rise of the angiosperms: a genecological factor. Science 206:20–23

    PubMed  CAS  Google Scholar 

  46. Takhtajan A (1976) Neoteny and the origin of flowering plants. In: Beck CB (ed) Origin and early evolution of angiosperms. Columbia University Press, New York, pp 207–219

    Google Scholar 

  47. Doyle JA, Hickey LJ (1976) Pollen and leaves from the mid- Cretaceous Potomac Group and their bearing on early angiosperm evolution. In: Beck CB (ed) Origin and early evolution of angiosperms. Columbia University Press, New York, pp 139–206

    Google Scholar 

  48. Sanderson MJ, Donoghue MJ (1994) Shifts in diversification rate with the origin of angiosperms. Science 264:1590–1593

    PubMed  CAS  Google Scholar 

  49. Regal PJ (1977) Ecology and evolution of flowering plant dominance. Science 196:622–629

    PubMed  CAS  Google Scholar 

  50. Ericksson O, Bremer B (1992) Pollination systems, dispersal modes, life forms, and diversification rates in angiosperm families. Evolution 46:258–266

    Google Scholar 

  51. Bawa KS (1995) Pollination, seed dispersal and diversification of angiosperms. Trends Ecol Evol 10:311–312

    PubMed  CAS  Google Scholar 

  52. Ricklefs RE, Renner SS (1994) Species richness within families of flowering plants. Evolution 48:1619–1636

    Google Scholar 

  53. Tiffney BH, Mazer SJ (1995) Angiosperm growth habit, dispersal and diversification reconsidered. Evol Ecol 9:93–117

    Google Scholar 

  54. Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37

    PubMed  CAS  Google Scholar 

  55. Chase MW, Soltis DE, Olmstead RG, Morgan D, Les DH, Mishler BD, Duvall MR, Price RA, Hills HG, Qiu Y-L, Kron KA, Rettig JH, Conti E, Palmer JD, Manhart JR, Sytsma KJ, Michaels HJ, Kress WJ, Karol KG, Clark WD, Hedren M, Gaut BS, Jansen RK, Kim K-J, Wimpee CF, Smith JF, Furnier GR, Strauss SH, Xiang Q-Y, Plunkett GM, Soltis PS, Swensen SM, Williams SE, Gadek PA, Quinn CJ, Eguiarte LE, Golenberg E, Learn GH Jr, Graham SW, Barrett SCH, Dayanandan S, Albert VA (1993) Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Ann Missouri Bot Gard 80:528–580

    Google Scholar 

  56. Doyle JJ (1993) DNA, phylogeny, and the flowering of plant systematics. Bio Science 43:380–389

    Google Scholar 

  57. Sytsma KJ, Hahn WJ (1994) Molecular systematics: 1991–1993. Progr Bot 55:307–333

    Google Scholar 

  58. Meyerowitz EM (1995) The molecular genetics of pattern formation in flower development: a perspective after ten years of the Flowering Newsletter. Flow Newsl 20:4–12

    Google Scholar 

  59. Meyerowitz EM (1994a) The genetics of flower development. Sci Am 271(5):40–47

    Google Scholar 

  60. Meyerowitz EM (1994b) Flower development and evolution: new answers and new questions. Proc Natl Acad Sci USA 91:5735–5737

    PubMed  CAS  Google Scholar 

  61. Yanofsky MF (1995) Floral meristems to floral organs: genes controlling early events in Arabidopsis flower development. Ann Rev Pl Physiol Pl Mol Biol 46:167–188

    CAS  Google Scholar 

  62. Doyle JA (1994) Origin of the angiosperm flower: a phylogenetic perspective. Pl Syst Evol, Suppl 8, 7–29

    Google Scholar 

  63. Doyle JJ (1994) Evolution of a plant homeotic multigene family: towards connecting molecular systematics and molecular developmental genetics. Syst Biol 43:307–328

    Google Scholar 

  64. Purugganan MD, Rounsley SD, Schmidt RJ, Yanofsky MF (1995) Molecular evolution of flower development: diversification of the plant MADS-box regulatory gene family. Genetics 140:345–356

    PubMed  CAS  Google Scholar 

  65. Tandre K, Albert VA, Sundas A, Engström P (1995) Conifer homologues to genes that control floral development in angiosperms. Pl Mol Biol 27:69–78

    CAS  Google Scholar 

  66. Imaichi R, Kato M, Okada H (1995) Morphology of the outer integument in three primitive angiosperm families. Can J Bot 73:1242–1249

    Google Scholar 

  67. Robinson-Beers K, Pruitt RE, Gasser CS (1992) Ovule development in wild-type Arabidopsis and two female-sterile mutants. Pl Cell 4:1237–1249

    Google Scholar 

  68. Schneitz K, Hülskamp M, Pruitt RE (1995) Wild-type ovule development in Arabidopsis thaliana: a light microscope study of cleared whole-mount tissue. Pl J 7:731–749

    Google Scholar 

  69. Herr JM Jr (1995) The origin of the ovules. Am J Bot 82:547–564

    Google Scholar 

  70. Weigel D (1995) The genetics of flower development: from floral induction to ovule morphogenesis. Ann Rev Gen 29:19–39

    CAS  Google Scholar 

  71. Colombo L, Franken J, Koetje E, van Went J, Dons HJM, Angenent GC, van Tunen AJ (1995) The Petunia MADS box gene FBP11 determines ovule identity. Pl Cell 7:1859–1868

    CAS  Google Scholar 

  72. Chasan R (1995) Ovule origins. Pl Cell 7:1735–1737

    CAS  Google Scholar 

  73. Ray A, Robinson-Beers K, Ray S, Baker SC, Lang JD, Preuss D, Milligan SB, Gasser CS (1994) Arabidopsis floral homeotic gene BELL (BEL1) controls ovule development through negative regulation of AGAMOUS gene (AG). Proc Natl Acad Sci USA 91:5761–5765

    PubMed  CAS  Google Scholar 

  74. Modrusan Z, Reiser L, Feldmann KA, Fischer RL, Haughn GW (1994) Homeotic transformation of ovules into carpel-like structures in Arabidopsis. Pl Cell 6:333–349

    CAS  Google Scholar 

  75. Klucher KM, Chow H, Reiser L, Fischer RL (1996) The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. Pl Cell 8:137–153

    CAS  Google Scholar 

  76. Elliott RC, Betzner AS, Huttner E, Oakes MP, Tucker WQJ, Gerentes D, Perez P, Smyth DR (1996) AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Pl Cell 8:155–168

    CAS  Google Scholar 

  77. Gaiser JC, Robinson-Beers K, Gasser CS (1995) The Arabidopsis SUPERMAN gene mediates asymmetric growth of the outer integument of ovules. Pl Cell 7:333–345

    CAS  Google Scholar 

  78. Stebbins GL (1971) Relationships between adaptive radiation, speciation and major evolutionary trends. Taxon 20:3–16

    Google Scholar 

  79. Riedl R (1978) Order in living organisms. A systems analysis of evolution. Wiley, Chichester

    Google Scholar 

  80. Muller GB, Wagner GP (1991) Novelty in evolution: restructuring the concept. Ann Rev Ecol Syst 22:229–256

    Google Scholar 

  81. Baum DA, Larson A (1991) Adaptation reviewed: a phylogenetic methodology for studying character macroevolution. Syst Zool 40:1–18

    Google Scholar 

  82. Ghiselin MT (1995) Perspective:Darwin, progress, and economic principles. Evolution 49:1029–1037

    Google Scholar 

  83. Nickrent DL, Soltis DE (1995) A comparison of angiosperm phylogenies from nuclear 18S rDNA and rbcL sequences. Ann Missouri Bot Gard 82:208–234

    Google Scholar 

  84. Takaso T, Bouman F (1986) Ovule and seed ontogeny in Gnetum gnemon L. Bot Mag Tokyo 99:241–266

    Google Scholar 

  85. Serbet R, Rothwell GW (1995) Functional morphology and homologies of gymno-spermous ovules: evidence from a new species of Stephanospermum (Medullosales). Can J Bot 73:650–661

    Google Scholar 

  86. Taylor TN, Del Fueyo GM, Taylor EL (1994) Permineralized seed fern cupules from the Triassic of Antarctica: implications for cupule and carpel evolution. Am J Bot 81:666–677

    Google Scholar 

  87. Endress PK (1975) Nachbarliche Formbeziehungen mit Hüllfunktion im Infloreszenz- und Blütenbereich. Bot Jahrb Syst 96:1–44

    Google Scholar 

  88. Verbeke JA (1992) Fusion events during floral morphogenesis. Ann Rev Pl Physiol Mol Biol 43:583–598

    Google Scholar 

  89. van der Schoot C, Dietrich MA, Storms M, Verbeke JA, Lucas WJ (1995) Establishment of a cell-to-cell communication pathway between separate carpels during gyno-ecium development. Planta 195:450–455

    Google Scholar 

  90. Ciampolini F, Faleri C, Cresti M (1995) Structural and cytochemical analysis of the stigma and style in Tibouchina semidecandra Cogn. (Melastomataceae). Ann Bot 76:421–427

    Google Scholar 

  91. Heslop-Harrison Y (1981) Stigma characteristics and angiosperm taxonomy. Nord J Bot 1:401–420

    Google Scholar 

  92. Schill R, Baumm A, Wolter M (1985) Vergleichende Mikromorphologie der Narbenoberflächen bei den Angiospermen; Zusammenhange mit Pollenoberflächen bei heterostylen Sippen. Pl Syst Evol 148:185–214

    Google Scholar 

  93. Buzgó M (1994) Inflorescence development of Pistia stratiotes (Araceae). Bot Jahrb Syst 115:557–570

    Google Scholar 

  94. Endress PK (1982) Syncarpy and alternative modes of escaping disadvantages of apocarpy in primitive angiosperms. Taxon 31:48–52

    Google Scholar 

  95. van Heel WA (1983) The ascidiform early development of free carpels, a S.E.M.-investigation. Blumea 28:231–270

    Google Scholar 

  96. Sage TL, Williams EG (1995) Structure, ultrastructure, and histochemistry of the pollen tube pathway in the milkweed Asclepias exaltata L. Sex Pl Reprod 8:257–265

    Google Scholar 

  97. Gane AM, Clarke AE, Bacic A (1995) Localisation and expression of arabinogalactan-proteins in the ovaries of Nicotiana alata Link and Otto. Sex Pl Reprod 8:278–282

    Google Scholar 

  98. Cheung AY, Wang H, Wu H-M (1995) A floral transmitting tissue-specific glycoprotein attracts pollen tubes and stimulates their growth. Cell 82:383–393

    PubMed  CAS  Google Scholar 

  99. Wang H, Wu H-M, Cheung AY (1993) Development and pollination regulated accumulation and glycosylation of a stylar transmitting tissue-specific proline-rich protein. Pl Cell 5:1639–1650

    CAS  Google Scholar 

  100. Lord EM, Sanders LC (1992) Roles for the extracellular matrix in plant development and pollination: a special case of cell movement in plants. Develop Biol 153:16–28

    PubMed  CAS  Google Scholar 

  101. Sanders LC, Lord EM (1992) A dynamic role for the stylar matrix in pollen tube extension. Int Rev Cytol 140:297–318

    Google Scholar 

  102. Jauh GY, Lord EM (1995) Movement of the tube cell in the lily style in the absence of the pollen grain and the spent pollen tube. Sex Pl Reprod 8:168–172

    Google Scholar 

  103. Mascarenhas JP (1993) Molecular mechanisms of pollen tube growth and differentiation. Pl Cell 5:1303–1314

    CAS  Google Scholar 

  104. Hülskamp M, Schneitz K, Pruitt RE (1995) Genetic evidence for a long range activity that directs pollen tube guidance in Arabidopsis. Pl Cell 7:57–64

    Google Scholar 

  105. Sniezko R, Winiarczyk K (1995) Pollen tube growth in pistils of female-sterile plants of Oenothera mut. brevistylis. Protoplasma 187:31–38

    Google Scholar 

  106. Lolle SJ, Cheung AY, Sussex IM (1992) Fiddlehead: an Arabidopsis mutant consti-tutively expressing an organ fusion program that involves interactions between epidermal cells. Develop Biol 152:383–392

    PubMed  CAS  Google Scholar 

  107. Lolle SJ, Cheung AY (1993) Promiscuous germination and growth of wildtype pollen from Arabidopsis and related species on the shoot of the Arabidopsis mutant, fiddlehead. Develop Biol 155:250–258

    PubMed  CAS  Google Scholar 

  108. Lolle SJ, Hsu W, Kopczak S, Pruitt RE (1996) Genetic analysis of ontogenetic fusion in Arabidopsis. In: Knox RB, Singh MB (eds) Plant reproduction’96. School of Botany, University of Melbourne, p 28

    Google Scholar 

  109. Alvarez J, Heisler MGB, Atkinson A, Smyth DR (1996) Spatula: a gene involved in carpel fusion and the development of transmitting tract tissue in Arabidopsis thaliana. In: Knox RB, Singh MB (eds) Plant reproduction’96. School of Botany, University of Melbourne, p 86

    Google Scholar 

  110. Kandasamy MK, Nasrallah JB, Nasrallah ME (1994) Pollen-pistil interactions and developmental regulation of pollen tube growth in Arabidopsis. Development 120:3405–3418

    CAS  Google Scholar 

  111. Nasrallah JB, Nasrallah ME (1993) Pollen-stigma signaling in the sporophytic self-incompatibility response. Pl Cell 5:1325–1335

    Google Scholar 

  112. Clarke AE, Newbigin E (1993) Molecular aspects of self-incompatibility in flowering plants. Ann Rev Genet 27:257–279

    PubMed  CAS  Google Scholar 

  113. Cheung AY (1995) Pollen-pistil interactions in compatible pollination. Proc Natl Acad Sci USA 92:3077–3080

    PubMed  CAS  Google Scholar 

  114. Weiler SG, Donoghue MJ, Charlesworth D (1995) The evolution of self-incompatibility in flowering plants: a phylogenetic approach. Monogr Syst Bot Missouri Bot Gard 53:355–382

    Google Scholar 

  115. Olmstead RG (1989) The origin and function of self-incompatibility in flowering plants. Sex Pl Reprod 2:127–136

    Google Scholar 

  116. Mulcahy DL, Mulcahy GB, Searcy KB (1992) Evolutionary genetics of pollen competition. In: Wyatt R (ed) Ecology and evolution of plant reproduction. Chapman & Hall, New York, pp 25–36

    Google Scholar 

  117. Mulcahy DL, Mulcahy GB (1987) The effects of pollen tube competition. Am Sci 75:44–50

    Google Scholar 

  118. Walsh NE, Charlesworth D (1992) Evolutionary interpretation of differences in pollen tube growth rates. Quart Rev Biol 67:19–37

    Google Scholar 

  119. Endress PK (1987) Floral phyllotaxis and floral evolution. Bot Jahrb Syst 108:417–438

    Google Scholar 

  120. Endress PK (1990) Patterns of floral construction in ontogeny and phylogeny. Biol J Linn Soc 39:153–175

    Google Scholar 

  121. Endress PK (1996) Homoplasy in flowers. In: Sanderson MJ, Hufford L (eds) Homoplasy and the evolutionary process. Academic, Orlando, pp 303–325

    Google Scholar 

  122. Olmstead RG, Bremer B, Scott KM, Palmer JD (1993) A parsimony analysis of the Asteridae sensu lato based on rbcL sequences. Ann Missouri Bot Gard 80:700–722

    Google Scholar 

  123. Kron KA, Chase MW (1993) Systematics of the Ericaceae, Empetraceae, Epacri-daceae and related taxa based upon rbcL sequence data. Ann Missouri Bot Gard 80:735–741

    Google Scholar 

  124. Anderberg AA (1994) Phylogeny of the Empetraceae, with special emphasis on character evolution in the genus Empetrum. Syst Bot 19:35–46

    Google Scholar 

  125. Hempel AL, Reeves PA, Olmstead RG, Jansen RK (1995) Implications of rbcL sequence data for higher order relationships of the Loasaceae and the anomalous aquatic plant Hydrostachys (Hydrostachyaceae). Pl Syst Evol 194:25–37

    Google Scholar 

  126. Gustafsson MHG, Backlund A, Bremer B (1996) Phylogeny of the Asterales sensu lato based on rbcL sequences with particular reference to the Goodeniaceae. Pl Syst Evol 199:217–242

    Google Scholar 

  127. Hufford L (1988) The evolution of floral morphological diversity in Eucnide (Loasaceae): The implications of modes and timing of ontogenetic changes on phy-logenetic diversification. In: Leins P, Tucker SC, Endress PK (eds) Aspects of floral development. Cramer, Berlin, pp 103–119

    Google Scholar 

  128. Hufford L (1992) Rosidae and their relationships to other nonmagnoliid dicotyledons: a phylogenetic analysis using morphological and chemical data. Ann Missouri Bot Gard 79:218–248

    Google Scholar 

  129. Erbar C, Leins P (1988) Blütenentwicklungsgeschichtliche Studien an Aralia und Hedera (Araliaceae). Flora 180:391–406

    Google Scholar 

  130. Erbar C, Leins P (1996) An analysis of the early floral development of Pittosporum tobira (Thunb.) Aiton and some remarks on the systematic position of the family Pittosporaceae. Fedde Rep 106:463–473

    Google Scholar 

  131. Wagner G (1989) The origin of morphological characters and the biological basis of homology. Evolution 43:1157–1171

    Google Scholar 

  132. Galen C (1996) Rates of floral evolution: adaptation to bumblebee pollination in an alpine wildflower, Polemonium viscosum. Evolution 50:120–125

    Google Scholar 

  133. Carr DE, Fenster CB (1994) Levels of genetic variation and covariation for Mimulus (Scrophulariaceae) floral traits. Heredity 72:606–618

    Google Scholar 

  134. Fenster CB, Ritland K (1994) Evidence for natural selection on mating system in Mimulus (Scrophulariaceae). Int J Pl Sci 155:588–596

    Google Scholar 

  135. Bradshaw HD Jr, Wilbert SM, Otto KG, Schemske DW (1995) Genetic mapping of floral traits associated with reproductive isolation in monkeyflowers (Mimulus). Nature 376:762–765

    CAS  Google Scholar 

  136. von Goethe JW (1790) Versuch die Metamorphose der Pflanzen zu erklären. Ettinger, Gotha

    Google Scholar 

  137. Sprengel CK (1793) Das entdeckte Geheimniss der Natur im Bau und in der Befruchtung der Blumen. Vieweg, Berlin

    Google Scholar 

  138. Donoghue MJ, Sanderson MJ (1992) The suitability of molecular and morphological evidence in reconstructing plant phylogeny. In: Soltis PS, Soltis DE, Doyle JJ (eds) Molecular systematics of plants. Chapman & Hall, New York, pp 340–368

    Google Scholar 

  139. Albert VA, Backlund A, Bremer K, Chase MW, Manhart JR, Mishler BD, Nixon KC (1994) Functional constraints and rbcL evidence for land plant phylogeny. Ann Missouri Bot Gard 81:534–567

    Google Scholar 

  140. Bremer K (1994) Branch support and tree stability. Cladistics 10:295–304

    Google Scholar 

  141. Donoghue MJ (1994) Progress and prospects in reconstructing plant phylogeny. Ann Missouri Bot Gard 81:405–418

    Google Scholar 

  142. Doyle JA, Donoghue MJ, Zimmer EA (1994) Integration of morphological and ribosomal RNA data on the origin of angiosperms. Ann Missouri Bot Gard 81:419–450

    Google Scholar 

  143. de Queiroz A, Donoghue MJ, Kim J (1995) Separate versus combined analysis of phylogenetic evidence. Ann Rev Ecol Syst 26:657–681

    Google Scholar 

  144. Sytsma KJ, Baum DA (1996) Molecular phylogenies and the diversification of angiosperms. In: Taylor DW, Hickey LJ (eds) Flowering plant origin, evolution and phylogeny. Chapman & Hall, New York, pp 314–340

    Google Scholar 

  145. Renner SS, Ricklefs RE (1905) Dioecy and its correlates in the flowering plants. Am J Bot 82:596–606

    Google Scholar 

  146. Barrett SCH, Harder LD (1996) Ecology and evolution of plant mating. Trends Ecol Evol 11:73–79

    PubMed  CAS  Google Scholar 

  147. Endress PK (1992) Evolution and floral diversity: the phylogenetic surroundings of Arabidopsis and Antirrhinum. Int J Pl Sci 153:S106-S122

    Google Scholar 

  148. Price RA, Palmer JD, Al-Shehbaz IA (1994) Systematic relationships of Arabidopsis: a molecular perspective. In: Meyerowitz EM, Somerville CR (eds) Arabidopsis. Cold Spring Harbor Laboratory, New York, pp 7–19

    Google Scholar 

  149. Kellogg EA, Shaffer HB (1993) Model organisms in evolutionary studies. Syst Biol 42:409–414

    Google Scholar 

  150. Zimmer EA (1994) Perspectives on future applications of experimental biology to evolution. In: Schierwater B, Streit B, Wagner GP, DeSalle R (eds) Molecular ecology and evolution: approaches and applications. Birkhäuser, Basel, pp 607–616

    Google Scholar 

  151. Frankie GW, Vinson SB, Newstrom LE, Barthell JF, Haber WA, Frankie JK (1990) Plant phenology, pollination ecology, pollinator behaviour and conservation of pollinators in Neotropical dry forest. In: Bawa KS, Hadley M (eds) Reproductive ecology of tropical forest plants. UNESCO, Paris, pp 37–47

    Google Scholar 

  152. Prance GT (1991) Rates of loss of biological diversity: a global view. In: Spellerberg IF, Goldsmith FB, Morris MG (eds) The scientific management of temperate communities for conservation. Blackwell, London, pp 27–44

    Google Scholar 

  153. Vogel S, Westerkamp C (1991) Pollination: an integrating factor of biocenoses. In: Seitz A, Loeschke V (eds) Species conservation: a population-biological approach. Birkhäuser, Basel, pp 159–170

    Google Scholar 

  154. Wilson EO (1992) The diversity of life. Harvard University Press, Cambridge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Endress, P.K. (1997). Evolutionary Biology of Flowers: Prospects for the Next Century. In: Iwatsuki, K., Raven, P.H. (eds) Evolution and Diversification of Land Plants. Springer, Tokyo. https://doi.org/10.1007/978-4-431-65918-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-65918-1_5

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-65920-4

  • Online ISBN: 978-4-431-65918-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics