Skip to main content

Phylogenetic Reconstruction of Some Conifer Families: Role and Significance of Permineralized Cone Records

  • Chapter
Evolution and Diversification of Land Plants

Abstract

The quest for a better understanding of nature is a major human motivation in the advancement of natural science. In many fields of biological science, reconstruction of the entire course of evolution, that is, the phylogeny of organisms, has been and is still attracting those who attempt to understand the biodiversity of this living planet. Paleobotany is a study that has greatly contributed to our knowledge of plant history.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rothwell GW, Serbet R (1994) Lignophyte phylogeny and the evolution of spermato-phytes. Syst Bot 19:443–482

    Article  Google Scholar 

  2. Hart JA (1987) A cladistic analysis of conifers: preliminary reports. J Arnold Arb 68:269–307

    Google Scholar 

  3. Miller CN (1988) Origin of modern conifer families. In: Beck CB (ed) Origin and evolution of gymnosperms. Columbia University Press, New York, pp 448–486

    Google Scholar 

  4. Eckenwalder JE (1976) Re-evaluation of Cupressaceae and Taxodiaceae: a proposed merger. Madroño 23:237–300

    Google Scholar 

  5. Price RA, Olsen-Stojkovich J, Lowenstein JM (1987) Relationships among the genera of Pinaceae: an immunological comparison. Syst Bot 12:91–97

    Article  Google Scholar 

  6. Price RA, Lowenstein JM (1989) An immunological comparison of the Sciadopityace-ae, Taxodiaceae, and Cupressaceae. Syst Bot 14:141–149

    Article  Google Scholar 

  7. Chase MW, Soltis DE, Olmstead RG, Margan D, Les DH, Mishler BD, Duvall MR, Price RA, Hill HG, Qiu Y, Kron KA, Rettig JH, Conti E, Palmer JH, Manhart JR, Sysma KJ, Michaels HJ, Kress WJ, Karol KG, Clark WD, Hedrén M, Gaut BS, Jansen RK, Kim K, Wimpee CF, Smith JF, Furnier GR, Strauss SH, Xiang Q, Plunkett GM, Soltis PS, Swensen SM, Williams SE, Gadek PA, Quinn CJ, Eguiarte LE, Golenberg E, Learn GH, Graham SW, Barrett SCH, Dayanandan S, Albert VA (1993) Phyloge-netics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Ann Misouri Bot Gard 80:528–580

    Article  Google Scholar 

  8. Brunsfeld SJ, Soltis PS, Soltis DE, Gadek PA, Quinn CJ, Strenge DD, Ranker TA (1994) Phylogenetic relationships among the genera of Taxodiaceae and Cupressace-ae: evidence from rbcL sequences. Syst Bot 19:253–262

    Article  Google Scholar 

  9. Gadeck PA, Quinn CJ (1993) A preliminary analysis of relationships within the Cupressaceae sensu stricto based on rbcL sequences. Ann Miss Bot Gard 80:581–586

    Article  Google Scholar 

  10. Wang X, Szmidt AE (1993) Chloroplast DNA-based phylogeny of Asian Pinus species (Pinaceae). Pl Syst Evol 188:197–211

    Article  Google Scholar 

  11. Smith DE, Klein AS (1994) Phylogenetic inferences on the relationship of North American and European Picea species based on nuclear ribosomal 18S sequences and the internal transcribed spacer 1 region. Molec Phyl Evol 3:17–26

    Article  CAS  Google Scholar 

  12. Pilger R (1926) Coniferae. In: Engler A, Prantl K (eds) Die Naturlichen Pflanzenfamilien. 2nd edition. Wilhelm Engelmann, Leipzig, pp 121–166

    Google Scholar 

  13. Ohsawa T (1994) Anatomy and relationships of petrified seed cones of the Cupressaceae, Taxodiaceae, and Sciadopityaceae. J Plant Res 107:503–512

    Article  Google Scholar 

  14. Ohsawa T, Nishida H, Nishida M (1992) Structure and affinities of the petrified plants from the Cretaceous of northern Japan and Saghalien, XI. A cupressoid seed cone from the Upper Cretaceous of Hokkaido. Bot Mag Tokyo 105:125–133

    Article  Google Scholar 

  15. Stopes MC, Fujii K (1910) Studies on the structure and affinities of Cretaceous plants. Philos Trans R Soc London Ser B 210:1–90

    Google Scholar 

  16. Ohsawa T, Nishida M, Nishida H (1992) Structure and affinities of the petrified plants from the Cretaceous of northern Japan and Saghalien, X. Two Sequoia-like cones from the Upper Cretaceous of Hokkaido. J Jap Bot 67:72–82

    Google Scholar 

  17. Nishida M, Ohsawa T, Nishida H (1992) Structure and affinities of petrified plants from the Cretaceous of northern Japan and Saghalien VIII. Parataiwania nihonghii gen. et sp. nov. a taxodiaceous cone from the Upper Cretaceous of Hokkaido. J Jpn Bot 67:1–9

    Google Scholar 

  18. Nishida M, Nishida H, Ohsawa T (1991) Structure and affinities of petrified plants from the Cretaceous of northern Japan and Saghalien VI. Yezosequoia shimanukii gen. et sp. nov. a petrified taxodiaceous cone from Hokkaido. J Jpn Bot 66:280–291

    Google Scholar 

  19. Ohsawa T, Nishida H, Nishida M (1993) Structure and affinities of the petrified plants from the Cretaceous of northern Japan and Saghalien. XIII. Yubaristrobus gen. nov., A new taxodiaceous cone from the Upper Cretaceous of Hokkaido. J Plant Res 106:1–9

    Article  Google Scholar 

  20. Saiki K, Kimura T (1993) Permineralized taxodiaceous seed cone from the Upper Cretaceous of Hokkaido, Japan. Rev Palaeobot Palynol 76:83–96

    Article  Google Scholar 

  21. Page CN (1990) Pinatae. In: Kramer KU, Green PS (eds) Pteridophytes and gymno-sperms. Springer, Berlin Heidelberg New York, pp 290–236

    Google Scholar 

  22. Hida M (1962) The systematic position of Metasequoia. Bot Mag Tokyo 73:316–323

    Google Scholar 

  23. Takaso T, Tomlinson PB (1990) Cone and ovule onogeny in Taxodium and Glyp-tostrobus (Taxodiaceae-Coniferales). Am J Bot 77:1209–1221

    Article  Google Scholar 

  24. Van Tieghem P (1891) Structure et affinites des Abies et des generes les plus voisins. Bull Soc Bot France 38:406–415

    Google Scholar 

  25. Doyle JC (1945) Developmental lines in pollination mechanisms in Coniferales. Sci Proc R Dublin Soc 24:43–62

    Google Scholar 

  26. Jeffrey EC (1905) Comparative anatomy and phylogeny of conifers. Pt.2-Abietineae. Mem Boston Soc Nat Hist 6:1–37

    Google Scholar 

  27. Vierhapper F (1910) Enteurf eines neuen Systems der Coniferen. Abh KK Zool-Bot Ges Wien 5:1–56

    Google Scholar 

  28. Melchior H, Wedermann E (1954) A. Englers Syllabus der Pflanzen familien I. Allg. Teil. Bakterien bis Gymnosperm. Vol 12. Aufl, Berlin

    Google Scholar 

  29. Farjon A (1990) Pinaceae. Drawing and description of the genera Abies, Cedrus, Pseudolarix, Keteleeria, Nothotsuga, Tsuga, Cathaya, Pseudotsuga, Larix and Picea. Koeltz Sci Books, Königstein

    Google Scholar 

  30. Frankis MP (1989) Generic inter-relationships in Pinaceae. Notes R Bot Gard Edinburgh 45:527–548

    Google Scholar 

  31. Seward AC (1919) Fossil plants vol 4. Cambridge University Press, Cambridge

    Google Scholar 

  32. Stopes MC (1915) Catalogue of the Mesozoic plants in the British Museum. The Cretaceous flora. Part 2 Lower Greensand (Aptian) plants of Britain. British Museum, London

    Google Scholar 

  33. Alvin KL (1960) Further conifers of the Pinaceae from the Wealden Formation of Belgium. Mem Inst Roy Sci Nat Belg 146:1–39

    Google Scholar 

  34. Miller CN, Marinky CA (1986) Seed cones of Pinus from the Late Cretaceous of New Jersey. Rev Palaeobot Palynol 46:257–272

    Article  Google Scholar 

  35. Miller CN (1969) Pinus avonensis, a new species of petrified cones from the Oligocène of western Montana. Am J Bot 56:972–978

    Article  Google Scholar 

  36. Miller CN (1973) Silicified cones and vegetative remains of Pinus from the Eocene of British Colombia. Cont Univ Mich Mus Paleontol 24:101–118

    Google Scholar 

  37. Miller CN (1974) Pinus wolfei, a new petrified cone from the Eocene of Washington. Am J Bot 61:772–777

    Article  Google Scholar 

  38. Miller CN (1978) Pinus burtii, a new species of petrified cones from the Miocene of Martha’s Vineyard. Bul Torrey Bot Club 105:

    Google Scholar 

  39. Underwood JC, Miller CN (1980) Pinus buchananii a new species based on a petrified cone from the Oligocene of Washington. Amer J Bot 67:1132–1135

    Article  Google Scholar 

  40. Stockey RA (1983) Pinus driftwoodensis sp. n. from the Early Tertiary of British Colombia. Bot Gaz 144:148–156

    Article  Google Scholar 

  41. Stockey RA (1984) Middle Eocene Pinus remains from British Colombia. Bot Gaz 145:262–274

    Article  Google Scholar 

  42. Miller CN (1992) Structurally preserved cones of Pinus from the Neogene of Idaho and Oregon. Int J Plant Sci 153:147–154

    Article  Google Scholar 

  43. Banks HP, Ortiz-Stomaor A, Hartmanb CM (1981) Pinus escalantensis sp. nov. a new permineralized cone from the Oligocene of British Colombia. Bot Gaz 142:286–293

    Article  Google Scholar 

  44. Miller CN (1970) Picea diettertiana, a new species of petrified cones from the Oligocene of Western Montana. Am J Bot 57:579–585

    Article  Google Scholar 

  45. Miller CN (1989) A new species of Picea based on silicified seed cones from the Oligocène of Washington. Am J Bot 76:749–754

    Google Scholar 

  46. Crabtree DR (1983) Picea wolfei, a new species of petrified cone from the Miocene of northwestern Nevada. Am J Bot 70:1356–1364

    Article  Google Scholar 

  47. Dutt CP (1916) Pityostrobus macrochephalus L. and H. A Tertiary cone showing ovular structures. Ann Bot 30:529–549

    Google Scholar 

  48. Alvin KL (1953) Three Abietaceous cones from the Wealden of Belgium. Mém Inst R Sci Nat Belg 125:1–42

    Google Scholar 

  49. Crabtree DR, Miller CN (1989) Pityostrobus makaensis, a new species of silicified pinaceous seed cone from the Middle Tertiary of Washington. Am J Bot 76:176–184

    Article  Google Scholar 

  50. Creber GT (1956) A new species of abietaceous cone from the Lower Greensand of the Isle of Wight. Ann Bot, NS 20:375–383

    Google Scholar 

  51. Creber GT (1960) On Pityostrobus leckenbyi (Carruthers) Seward and Pityostrobus oblongus (Lindley and Hutton) Seward fossil abietaceous cones from the Cretaceous. J Linn Soc (Bot) 56:421–429

    Article  Google Scholar 

  52. Louvel C (1960) Contribution l’étude de Pityostrobus oblongus (Fliehe sp.) appareil femelle d’un conifère Albien de l’Argonne. Mém Soc Géol Françias NS 90:1–26

    Google Scholar 

  53. Miller CN (1972) Pityostrobus palmeri, a new species of structurally preserved conifer cones from the Late Cretaceous of New Jersey. Am J Bot 59:352–358

    Article  Google Scholar 

  54. Miller CN (1974) Pityostrobus hallii, a new species of structurally preserved conifer cones from the Late Cretaceous of Maryland. Am J Bot 61:798–804

    Article  Google Scholar 

  55. Miller CN (1976) Two new pinaceous cone from the Early Cretaceous of California. J Paleontol 50:821–832

    Google Scholar 

  56. Miller CN (1977) Pityostrobus lynni (Berry) comb. nov., a pinaceous seed cone from the Palaeocene of Virginia. Bull Torrey Bot Club 104:5–9

    Article  Google Scholar 

  57. Miller CN (1978) Pityostrobus cliffwoodensis (Berry) comb. nov., a pinaceous seed cone from the Late Cretaceous of New Jersey. Bot Gaz 139:284–287

    Article  Google Scholar 

  58. Miller CN (1985) Pityostrobus pubescens, a new species of pinaceous cones from the Late Cretaceous of New Jersey. Am J Bot 76:133–142

    Article  Google Scholar 

  59. Ohsawa T, Nishida H, Nishida M (1991) Structure and affinities of petrified plants from the Cretaceous of northern Japan and Saghalien VII. Petrified pinaceous cone from the Upper Cretaceous of Hokkaido. J Jpn Bot 66:356–368

    Google Scholar 

  60. Stockey RA (1981) Pityostrobus mcmurrayensis sp. nov., a pe1rmineralized pinaceous cone from the Cretaceous of Alberta. Can J Bot 59:75–82

    Article  Google Scholar 

  61. Miller CN (1976) Early evolution in the Pinaceae. Rev Paleobot Palynl 21:101–117

    Article  Google Scholar 

  62. Alvin KL (1957) On Pseudo araucaria Fliehe emend, a new genus of fossil pinaceous cones. Ann Bot 21:33–51

    Google Scholar 

  63. Ohsawa T, Nishida M, Nishida H (1992) Structure and affinities of the petrified plants from the Cretaceous of northern Japan and Saghalien. XII. Obirastrobus gen. nov., petrified pinaceous cones from the Upper Cretaceous of Hokkaido. Bot Mag Tokyo 105:461–484

    Article  Google Scholar 

  64. Alvin KL (1957) On the two cones Pseudoaraucaria heeri (Coemans) nov. comb. and Pityostrobus villerotenensis nov. sp. from the Wealden of Belgium. Mém Inst Roy Sci Nat Belg 135:1–27

    Google Scholar 

  65. Miller CN, Robison CR (1975) Two new species of structural preserved pinaceous cones from the Late Cretaceous of Martha’s Vineyard Island Massachusetts. J Paleontol 49:138–150

    Google Scholar 

  66. Alvin KL (1988) On a new specimen of Pseudoaraucaria major Fliehe (Pinaceae) from the Cretaceous of Isle of Wight. Bot J Linn Soc 97:159–170

    Article  Google Scholar 

  67. Swofford DL (1993) PAUP, phylogenetic analysis using parsimony. Version 3.1. Computer program distributed by the Illinois Natural History Survey. Champaign, Illinois, pp 257

    Google Scholar 

  68. Greguss P (1972) Xylotomy of the living conifers. Akad Kiado, Budapest

    Google Scholar 

  69. Florin R (1963) The distribution of conifer and taxad genera in time and space. Acta Horti Bergiani 20:121–312

    Google Scholar 

  70. Creber GT (1967) Notes on some petrified cones of the Pinaceae from the Cretaceous. Linn Soc Lond Proc 178:147–152

    Article  Google Scholar 

  71. Miller CN (1977) Mesozoic conifers. Bot Gaz 43:217–280

    Google Scholar 

  72. Stockey RA (1981) Some comments on the origin and evolution of conifers. Can J Bot 59:1932–1940

    Article  Google Scholar 

  73. Florin R (1951) Evolution of cordaites and conifers. Acta Horti Bergiani 17:259–388

    Google Scholar 

  74. Hart JA, Price RA (1990) The genera of Cupressaceae (including Taxodiaceae) in the southeastern United States. J Arnold Arbor 71:275–322

    Google Scholar 

  75. LaPasha CA, Miller CN (1981) New taxodiaceous cones from the Upper Cretaceous of New Jersey. Am J Bot 68:1374–1382

    Article  Google Scholar 

  76. Lemoine-Sebastian C (1968) La vascularisation du complexe bractée-écaille chez le Taxodiacées. Trav Lab Forest Toulouse 7:1–22

    Google Scholar 

  77. Ogura Y (1930) On the structure and affinities of some Cretaceous plants from Hokkaido. J Fac Sci Imp Univ Tokyo Sect III (Bot) 2:381–412

    Google Scholar 

  78. Radais M (1894) Contribution l’étude de l’anatomie comparée du fruit des conifères. Ann Sci Nat Bot Sér7 19:165–368

    Google Scholar 

  79. Satake Y (1934) On the systematic importance of the Japanese Taxodiaceae. Bot Mag Tokyo 48:186–205

    Google Scholar 

  80. Aase HC (1915) Vascular anatomy of the megasporophyllus of conifers. Bot Gaz 60:277–313

    Article  Google Scholar 

  81. Miller CN (1975) Petrified cones and needle-bearing twings of a new taxodiaceous conifer from the Early Cretaceous of California. Am J Bot 62:706–713

    Article  Google Scholar 

  82. Miller CN, Crabtree DR (1989) A new taxodiaceous seed cone from the Oligocene of Washington. Am J Bot 76:133–142

    Article  Google Scholar 

  83. Hirmer M (1936) Die Blüten der Coniferen. I. Entwicklungsgeschichte und vergleichende Morphologie des weiblichen Blütenzapfens der Coniferen. Bibliot Bot 114:1–100

    Google Scholar 

  84. Lemoine-Sebastian C (1969) La vascularisation du complexe bractée-écaille dans le cône femelle des Cupressacées. Botanica Rhedonica, Sér A 7:3–27

    Google Scholar 

  85. Lemoine-Sebastian C (1972) Étude comparative de la vascularisation et du complexe séminal chez les Cupressacées. Phytomorphology 22:246–260

    Google Scholar 

  86. Liu T, Su H (1983) Biosystematic studies on Taiwania and numerical evaluations on the systematics of Taxodiaceae. Taiwan Museum Special Publication Series. The Taiwan Museum, Taipei, pp 1–113

    Google Scholar 

  87. Hida M (1957) The comparative study of Taxodiaceae from the standpoint of development of the cone scale. Bot Mag Tokyo 70:44–51

    Google Scholar 

  88. Takaso T, Tomlinson PB (1989) Aspects of cone and ovule ontogeny in Cryptomeria (Taxodiaceae). Am J Bot 76:692–705

    Article  Google Scholar 

  89. Hayata B (1907) On Taiwania and its affinity to other genera. Bot Mag Tokyo 21:21–27

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Ohsawa, T.A. (1997). Phylogenetic Reconstruction of Some Conifer Families: Role and Significance of Permineralized Cone Records. In: Iwatsuki, K., Raven, P.H. (eds) Evolution and Diversification of Land Plants. Springer, Tokyo. https://doi.org/10.1007/978-4-431-65918-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-65918-1_4

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-65920-4

  • Online ISBN: 978-4-431-65918-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics