Advertisement

Phylogenetic Reconstruction of Some Conifer Families: Role and Significance of Permineralized Cone Records

  • Takeshi Asakawa Ohsawa

Abstract

The quest for a better understanding of nature is a major human motivation in the advancement of natural science. In many fields of biological science, reconstruction of the entire course of evolution, that is, the phylogeny of organisms, has been and is still attracting those who attempt to understand the biodiversity of this living planet. Paleobotany is a study that has greatly contributed to our knowledge of plant history.

Keywords

Resin Canal Extant Genus Vascular Cylinder Seed Cone Scale Base 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rothwell GW, Serbet R (1994) Lignophyte phylogeny and the evolution of spermato-phytes. Syst Bot 19:443–482CrossRefGoogle Scholar
  2. 2.
    Hart JA (1987) A cladistic analysis of conifers: preliminary reports. J Arnold Arb 68:269–307Google Scholar
  3. 3.
    Miller CN (1988) Origin of modern conifer families. In: Beck CB (ed) Origin and evolution of gymnosperms. Columbia University Press, New York, pp 448–486Google Scholar
  4. 4.
    Eckenwalder JE (1976) Re-evaluation of Cupressaceae and Taxodiaceae: a proposed merger. Madroño 23:237–300Google Scholar
  5. 5.
    Price RA, Olsen-Stojkovich J, Lowenstein JM (1987) Relationships among the genera of Pinaceae: an immunological comparison. Syst Bot 12:91–97CrossRefGoogle Scholar
  6. 6.
    Price RA, Lowenstein JM (1989) An immunological comparison of the Sciadopityace-ae, Taxodiaceae, and Cupressaceae. Syst Bot 14:141–149CrossRefGoogle Scholar
  7. 7.
    Chase MW, Soltis DE, Olmstead RG, Margan D, Les DH, Mishler BD, Duvall MR, Price RA, Hill HG, Qiu Y, Kron KA, Rettig JH, Conti E, Palmer JH, Manhart JR, Sysma KJ, Michaels HJ, Kress WJ, Karol KG, Clark WD, Hedrén M, Gaut BS, Jansen RK, Kim K, Wimpee CF, Smith JF, Furnier GR, Strauss SH, Xiang Q, Plunkett GM, Soltis PS, Swensen SM, Williams SE, Gadek PA, Quinn CJ, Eguiarte LE, Golenberg E, Learn GH, Graham SW, Barrett SCH, Dayanandan S, Albert VA (1993) Phyloge-netics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Ann Misouri Bot Gard 80:528–580CrossRefGoogle Scholar
  8. 8.
    Brunsfeld SJ, Soltis PS, Soltis DE, Gadek PA, Quinn CJ, Strenge DD, Ranker TA (1994) Phylogenetic relationships among the genera of Taxodiaceae and Cupressace-ae: evidence from rbcL sequences. Syst Bot 19:253–262CrossRefGoogle Scholar
  9. 9.
    Gadeck PA, Quinn CJ (1993) A preliminary analysis of relationships within the Cupressaceae sensu stricto based on rbcL sequences. Ann Miss Bot Gard 80:581–586CrossRefGoogle Scholar
  10. 10.
    Wang X, Szmidt AE (1993) Chloroplast DNA-based phylogeny of Asian Pinus species (Pinaceae). Pl Syst Evol 188:197–211CrossRefGoogle Scholar
  11. 11.
    Smith DE, Klein AS (1994) Phylogenetic inferences on the relationship of North American and European Picea species based on nuclear ribosomal 18S sequences and the internal transcribed spacer 1 region. Molec Phyl Evol 3:17–26CrossRefGoogle Scholar
  12. 12.
    Pilger R (1926) Coniferae. In: Engler A, Prantl K (eds) Die Naturlichen Pflanzenfamilien. 2nd edition. Wilhelm Engelmann, Leipzig, pp 121–166Google Scholar
  13. 13.
    Ohsawa T (1994) Anatomy and relationships of petrified seed cones of the Cupressaceae, Taxodiaceae, and Sciadopityaceae. J Plant Res 107:503–512CrossRefGoogle Scholar
  14. 14.
    Ohsawa T, Nishida H, Nishida M (1992) Structure and affinities of the petrified plants from the Cretaceous of northern Japan and Saghalien, XI. A cupressoid seed cone from the Upper Cretaceous of Hokkaido. Bot Mag Tokyo 105:125–133CrossRefGoogle Scholar
  15. 15.
    Stopes MC, Fujii K (1910) Studies on the structure and affinities of Cretaceous plants. Philos Trans R Soc London Ser B 210:1–90Google Scholar
  16. 16.
    Ohsawa T, Nishida M, Nishida H (1992) Structure and affinities of the petrified plants from the Cretaceous of northern Japan and Saghalien, X. Two Sequoia-like cones from the Upper Cretaceous of Hokkaido. J Jap Bot 67:72–82Google Scholar
  17. 17.
    Nishida M, Ohsawa T, Nishida H (1992) Structure and affinities of petrified plants from the Cretaceous of northern Japan and Saghalien VIII. Parataiwania nihonghii gen. et sp. nov. a taxodiaceous cone from the Upper Cretaceous of Hokkaido. J Jpn Bot 67:1–9Google Scholar
  18. 18.
    Nishida M, Nishida H, Ohsawa T (1991) Structure and affinities of petrified plants from the Cretaceous of northern Japan and Saghalien VI. Yezosequoia shimanukii gen. et sp. nov. a petrified taxodiaceous cone from Hokkaido. J Jpn Bot 66:280–291Google Scholar
  19. 19.
    Ohsawa T, Nishida H, Nishida M (1993) Structure and affinities of the petrified plants from the Cretaceous of northern Japan and Saghalien. XIII. Yubaristrobus gen. nov., A new taxodiaceous cone from the Upper Cretaceous of Hokkaido. J Plant Res 106:1–9CrossRefGoogle Scholar
  20. 20.
    Saiki K, Kimura T (1993) Permineralized taxodiaceous seed cone from the Upper Cretaceous of Hokkaido, Japan. Rev Palaeobot Palynol 76:83–96CrossRefGoogle Scholar
  21. 21.
    Page CN (1990) Pinatae. In: Kramer KU, Green PS (eds) Pteridophytes and gymno-sperms. Springer, Berlin Heidelberg New York, pp 290–236Google Scholar
  22. 22.
    Hida M (1962) The systematic position of Metasequoia. Bot Mag Tokyo 73:316–323Google Scholar
  23. 23.
    Takaso T, Tomlinson PB (1990) Cone and ovule onogeny in Taxodium and Glyp-tostrobus (Taxodiaceae-Coniferales). Am J Bot 77:1209–1221CrossRefGoogle Scholar
  24. 24.
    Van Tieghem P (1891) Structure et affinites des Abies et des generes les plus voisins. Bull Soc Bot France 38:406–415Google Scholar
  25. 25.
    Doyle JC (1945) Developmental lines in pollination mechanisms in Coniferales. Sci Proc R Dublin Soc 24:43–62Google Scholar
  26. 26.
    Jeffrey EC (1905) Comparative anatomy and phylogeny of conifers. Pt.2-Abietineae. Mem Boston Soc Nat Hist 6:1–37Google Scholar
  27. 27.
    Vierhapper F (1910) Enteurf eines neuen Systems der Coniferen. Abh KK Zool-Bot Ges Wien 5:1–56Google Scholar
  28. 28.
    Melchior H, Wedermann E (1954) A. Englers Syllabus der Pflanzen familien I. Allg. Teil. Bakterien bis Gymnosperm. Vol 12. Aufl, BerlinGoogle Scholar
  29. 29.
    Farjon A (1990) Pinaceae. Drawing and description of the genera Abies, Cedrus, Pseudolarix, Keteleeria, Nothotsuga, Tsuga, Cathaya, Pseudotsuga, Larix and Picea. Koeltz Sci Books, KönigsteinGoogle Scholar
  30. 30.
    Frankis MP (1989) Generic inter-relationships in Pinaceae. Notes R Bot Gard Edinburgh 45:527–548Google Scholar
  31. 31.
    Seward AC (1919) Fossil plants vol 4. Cambridge University Press, CambridgeGoogle Scholar
  32. 32.
    Stopes MC (1915) Catalogue of the Mesozoic plants in the British Museum. The Cretaceous flora. Part 2 Lower Greensand (Aptian) plants of Britain. British Museum, LondonGoogle Scholar
  33. 33.
    Alvin KL (1960) Further conifers of the Pinaceae from the Wealden Formation of Belgium. Mem Inst Roy Sci Nat Belg 146:1–39Google Scholar
  34. 34.
    Miller CN, Marinky CA (1986) Seed cones of Pinus from the Late Cretaceous of New Jersey. Rev Palaeobot Palynol 46:257–272CrossRefGoogle Scholar
  35. 35.
    Miller CN (1969) Pinus avonensis, a new species of petrified cones from the Oligocène of western Montana. Am J Bot 56:972–978CrossRefGoogle Scholar
  36. 36.
    Miller CN (1973) Silicified cones and vegetative remains of Pinus from the Eocene of British Colombia. Cont Univ Mich Mus Paleontol 24:101–118Google Scholar
  37. 37.
    Miller CN (1974) Pinus wolfei, a new petrified cone from the Eocene of Washington. Am J Bot 61:772–777CrossRefGoogle Scholar
  38. 38.
    Miller CN (1978) Pinus burtii, a new species of petrified cones from the Miocene of Martha’s Vineyard. Bul Torrey Bot Club 105:Google Scholar
  39. 39.
    Underwood JC, Miller CN (1980) Pinus buchananii a new species based on a petrified cone from the Oligocene of Washington. Amer J Bot 67:1132–1135CrossRefGoogle Scholar
  40. 40.
    Stockey RA (1983) Pinus driftwoodensis sp. n. from the Early Tertiary of British Colombia. Bot Gaz 144:148–156CrossRefGoogle Scholar
  41. 41.
    Stockey RA (1984) Middle Eocene Pinus remains from British Colombia. Bot Gaz 145:262–274CrossRefGoogle Scholar
  42. 42.
    Miller CN (1992) Structurally preserved cones of Pinus from the Neogene of Idaho and Oregon. Int J Plant Sci 153:147–154CrossRefGoogle Scholar
  43. 43.
    Banks HP, Ortiz-Stomaor A, Hartmanb CM (1981) Pinus escalantensis sp. nov. a new permineralized cone from the Oligocene of British Colombia. Bot Gaz 142:286–293CrossRefGoogle Scholar
  44. 44.
    Miller CN (1970) Picea diettertiana, a new species of petrified cones from the Oligocene of Western Montana. Am J Bot 57:579–585CrossRefGoogle Scholar
  45. 45.
    Miller CN (1989) A new species of Picea based on silicified seed cones from the Oligocène of Washington. Am J Bot 76:749–754Google Scholar
  46. 46.
    Crabtree DR (1983) Picea wolfei, a new species of petrified cone from the Miocene of northwestern Nevada. Am J Bot 70:1356–1364CrossRefGoogle Scholar
  47. 47.
    Dutt CP (1916) Pityostrobus macrochephalus L. and H. A Tertiary cone showing ovular structures. Ann Bot 30:529–549Google Scholar
  48. 48.
    Alvin KL (1953) Three Abietaceous cones from the Wealden of Belgium. Mém Inst R Sci Nat Belg 125:1–42Google Scholar
  49. 49.
    Crabtree DR, Miller CN (1989) Pityostrobus makaensis, a new species of silicified pinaceous seed cone from the Middle Tertiary of Washington. Am J Bot 76:176–184CrossRefGoogle Scholar
  50. 50.
    Creber GT (1956) A new species of abietaceous cone from the Lower Greensand of the Isle of Wight. Ann Bot, NS 20:375–383Google Scholar
  51. 51.
    Creber GT (1960) On Pityostrobus leckenbyi (Carruthers) Seward and Pityostrobus oblongus (Lindley and Hutton) Seward fossil abietaceous cones from the Cretaceous. J Linn Soc (Bot) 56:421–429CrossRefGoogle Scholar
  52. 52.
    Louvel C (1960) Contribution l’étude de Pityostrobus oblongus (Fliehe sp.) appareil femelle d’un conifère Albien de l’Argonne. Mém Soc Géol Françias NS 90:1–26Google Scholar
  53. 53.
    Miller CN (1972) Pityostrobus palmeri, a new species of structurally preserved conifer cones from the Late Cretaceous of New Jersey. Am J Bot 59:352–358CrossRefGoogle Scholar
  54. 54.
    Miller CN (1974) Pityostrobus hallii, a new species of structurally preserved conifer cones from the Late Cretaceous of Maryland. Am J Bot 61:798–804CrossRefGoogle Scholar
  55. 55.
    Miller CN (1976) Two new pinaceous cone from the Early Cretaceous of California. J Paleontol 50:821–832Google Scholar
  56. 56.
    Miller CN (1977) Pityostrobus lynni (Berry) comb. nov., a pinaceous seed cone from the Palaeocene of Virginia. Bull Torrey Bot Club 104:5–9CrossRefGoogle Scholar
  57. 57.
    Miller CN (1978) Pityostrobus cliffwoodensis (Berry) comb. nov., a pinaceous seed cone from the Late Cretaceous of New Jersey. Bot Gaz 139:284–287CrossRefGoogle Scholar
  58. 58.
    Miller CN (1985) Pityostrobus pubescens, a new species of pinaceous cones from the Late Cretaceous of New Jersey. Am J Bot 76:133–142CrossRefGoogle Scholar
  59. 59.
    Ohsawa T, Nishida H, Nishida M (1991) Structure and affinities of petrified plants from the Cretaceous of northern Japan and Saghalien VII. Petrified pinaceous cone from the Upper Cretaceous of Hokkaido. J Jpn Bot 66:356–368Google Scholar
  60. 60.
    Stockey RA (1981) Pityostrobus mcmurrayensis sp. nov., a pe1rmineralized pinaceous cone from the Cretaceous of Alberta. Can J Bot 59:75–82CrossRefGoogle Scholar
  61. 61.
    Miller CN (1976) Early evolution in the Pinaceae. Rev Paleobot Palynl 21:101–117CrossRefGoogle Scholar
  62. 62.
    Alvin KL (1957) On Pseudo araucaria Fliehe emend, a new genus of fossil pinaceous cones. Ann Bot 21:33–51Google Scholar
  63. 63.
    Ohsawa T, Nishida M, Nishida H (1992) Structure and affinities of the petrified plants from the Cretaceous of northern Japan and Saghalien. XII. Obirastrobus gen. nov., petrified pinaceous cones from the Upper Cretaceous of Hokkaido. Bot Mag Tokyo 105:461–484CrossRefGoogle Scholar
  64. 64.
    Alvin KL (1957) On the two cones Pseudoaraucaria heeri (Coemans) nov. comb. and Pityostrobus villerotenensis nov. sp. from the Wealden of Belgium. Mém Inst Roy Sci Nat Belg 135:1–27Google Scholar
  65. 65.
    Miller CN, Robison CR (1975) Two new species of structural preserved pinaceous cones from the Late Cretaceous of Martha’s Vineyard Island Massachusetts. J Paleontol 49:138–150Google Scholar
  66. 66.
    Alvin KL (1988) On a new specimen of Pseudoaraucaria major Fliehe (Pinaceae) from the Cretaceous of Isle of Wight. Bot J Linn Soc 97:159–170CrossRefGoogle Scholar
  67. 67.
    Swofford DL (1993) PAUP, phylogenetic analysis using parsimony. Version 3.1. Computer program distributed by the Illinois Natural History Survey. Champaign, Illinois, pp 257Google Scholar
  68. 68.
    Greguss P (1972) Xylotomy of the living conifers. Akad Kiado, BudapestGoogle Scholar
  69. 69.
    Florin R (1963) The distribution of conifer and taxad genera in time and space. Acta Horti Bergiani 20:121–312Google Scholar
  70. 70.
    Creber GT (1967) Notes on some petrified cones of the Pinaceae from the Cretaceous. Linn Soc Lond Proc 178:147–152CrossRefGoogle Scholar
  71. 71.
    Miller CN (1977) Mesozoic conifers. Bot Gaz 43:217–280Google Scholar
  72. 72.
    Stockey RA (1981) Some comments on the origin and evolution of conifers. Can J Bot 59:1932–1940CrossRefGoogle Scholar
  73. 73.
    Florin R (1951) Evolution of cordaites and conifers. Acta Horti Bergiani 17:259–388Google Scholar
  74. 74.
    Hart JA, Price RA (1990) The genera of Cupressaceae (including Taxodiaceae) in the southeastern United States. J Arnold Arbor 71:275–322Google Scholar
  75. 75.
    LaPasha CA, Miller CN (1981) New taxodiaceous cones from the Upper Cretaceous of New Jersey. Am J Bot 68:1374–1382CrossRefGoogle Scholar
  76. 76.
    Lemoine-Sebastian C (1968) La vascularisation du complexe bractée-écaille chez le Taxodiacées. Trav Lab Forest Toulouse 7:1–22Google Scholar
  77. 77.
    Ogura Y (1930) On the structure and affinities of some Cretaceous plants from Hokkaido. J Fac Sci Imp Univ Tokyo Sect III (Bot) 2:381–412Google Scholar
  78. 78.
    Radais M (1894) Contribution l’étude de l’anatomie comparée du fruit des conifères. Ann Sci Nat Bot Sér7 19:165–368Google Scholar
  79. 79.
    Satake Y (1934) On the systematic importance of the Japanese Taxodiaceae. Bot Mag Tokyo 48:186–205Google Scholar
  80. 80.
    Aase HC (1915) Vascular anatomy of the megasporophyllus of conifers. Bot Gaz 60:277–313CrossRefGoogle Scholar
  81. 81.
    Miller CN (1975) Petrified cones and needle-bearing twings of a new taxodiaceous conifer from the Early Cretaceous of California. Am J Bot 62:706–713CrossRefGoogle Scholar
  82. 82.
    Miller CN, Crabtree DR (1989) A new taxodiaceous seed cone from the Oligocene of Washington. Am J Bot 76:133–142CrossRefGoogle Scholar
  83. 83.
    Hirmer M (1936) Die Blüten der Coniferen. I. Entwicklungsgeschichte und vergleichende Morphologie des weiblichen Blütenzapfens der Coniferen. Bibliot Bot 114:1–100Google Scholar
  84. 84.
    Lemoine-Sebastian C (1969) La vascularisation du complexe bractée-écaille dans le cône femelle des Cupressacées. Botanica Rhedonica, Sér A 7:3–27Google Scholar
  85. 85.
    Lemoine-Sebastian C (1972) Étude comparative de la vascularisation et du complexe séminal chez les Cupressacées. Phytomorphology 22:246–260Google Scholar
  86. 86.
    Liu T, Su H (1983) Biosystematic studies on Taiwania and numerical evaluations on the systematics of Taxodiaceae. Taiwan Museum Special Publication Series. The Taiwan Museum, Taipei, pp 1–113Google Scholar
  87. 87.
    Hida M (1957) The comparative study of Taxodiaceae from the standpoint of development of the cone scale. Bot Mag Tokyo 70:44–51Google Scholar
  88. 88.
    Takaso T, Tomlinson PB (1989) Aspects of cone and ovule ontogeny in Cryptomeria (Taxodiaceae). Am J Bot 76:692–705CrossRefGoogle Scholar
  89. 89.
    Hayata B (1907) On Taiwania and its affinity to other genera. Bot Mag Tokyo 21:21–27Google Scholar

Copyright information

© Springer-Verlag Tokyo 1997

Authors and Affiliations

  • Takeshi Asakawa Ohsawa
    • 1
  1. 1.Department of Biology, Faculty of ScienceChiba UniversityInage-ku, Chiba 263Japan

Personalised recommendations