Morphological Diversity and Evolution of Vegetative Organs in Pteridophytes

  • Masahiro Kato
  • Ryoko Imaichi


The primitive vascular plants, or pteridophytes, are nonseed plants that reproduce by free spores. Pteridophytes were the earliest and are most primitive among the three major evolutionary grades of vascular plants. Early vascular plants appeared more than 400 million years ago, and subsequently diversified into a variety of groups. Seed plants evolved from progymnosperms, a group of pteridophytes most closely related to Pteropsida [1]. At present, there are four groups of pteridophytes, i.e., Psilopsida, Lycopsida, Equisetopsida, and Pteropsida or Filicopsida [2].


Vascular Plant Apical Meristem Shoot Apex Apical Cell Lower Devonian 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beck CB, Wight DC (1988) Progymnosperms. In: Beck CB (ed) Origin and evolution of gymnosperms. Columbia University Press, New York, pp 1–84Google Scholar
  2. 2.
    Eames AJ (1936) Morphology of vascular plans. Lower groups. McGraw-Hill, New YorkGoogle Scholar
  3. 3.
    Stewart WN, Rothwell GW (1993) Paleobotany and the evolution of plants, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  4. 4.
    Williams S (1931) An analysis of the vegetative organs of Selaginella grandii Moore, together with some observations on abnormalities and experimental results. Trans R Soc Edinburgh 57:1–21Google Scholar
  5. 5.
    Cusick F (1954) Experimental and analytical studies of pteridophytes. XXV. Morphogenesis in Selaginella willdenowii Baker-II. Angle-meristem and angle-shoots. Ann Bot (NS) 18:171–181Google Scholar
  6. 6.
    Webster TR (1969) An investigation of angle-meristem development in excised stem segments of Selaginella martensii. Can J Bot 47:717–722CrossRefGoogle Scholar
  7. 7.
    Siegert A (1974) Die Verzweigung der Selaginellen unter Berücksichtigung der Keimungsgeschichte. Beitr Biol Pflanzen 50:21–112Google Scholar
  8. 8.
    Wochok ZA, Sussex IM (1975) Morphogenesis in Selaginella. III. Meristem determination and cell differentiation. Develop Biol 47:376–383PubMedCrossRefGoogle Scholar
  9. 9.
    Jernstedt JA, Cutter EG, Lu P (1994) Independence of organogenesis and cell pattern in developing angle shoots of Selaginella martensii. Ann Bot 74:343–355CrossRefGoogle Scholar
  10. 10.
    Schoute JC (1938) Morphology. In: Verdoorn F (ed) Manual of pteridology. Martinus Nijhoff, The Hague, pp 1–64Google Scholar
  11. 11.
    Nägeli C, Leitgeb H (1868) Entstehung und Wachstum der Wurzeln. Beitr Wissenschaftl Bot Leipzig 4:124–158Google Scholar
  12. 12.
    Bruchmann H (1905) Von den Wurzelträgern der Selaginella kraussiana A. Br. Flora 95:150–166Google Scholar
  13. 13.
    Bower FO (1935) Primitive land plants. Macmillan, LondonGoogle Scholar
  14. 14.
    Webster TR, Steeves TA (1963) Morphology and development of the root of Selaginella densa Rydb. Phytomorphology 13:367–376Google Scholar
  15. 15.
    Webster TR, Steeves TA (1964) Developmental morphology of the root of Selaginella kraussiana A. Br. and Selaginella wallacei Hieronym. Can J Bot 42:1665–1676CrossRefGoogle Scholar
  16. 16.
    Webster TR, Steeves TA (1967) Developmental morphology of the root of Selaginella martensii Spring. Can J Bot 45:395–404CrossRefGoogle Scholar
  17. 17.
    Webster TR, Jageis R (1977) Morphology and development of aerial roots of Selaginella martensii grown in moist containers. Can J Bot 55:2149–2158CrossRefGoogle Scholar
  18. 18.
    Imaichi R, Kato M (1989) Developmental anatomy of the shoot apical cell, rhizophore and root of Selaginella uncinata. Bot Mag Tokyo 102:369–380CrossRefGoogle Scholar
  19. 19.
    Imaichi R, Kato M (1991) Developmental study of branched rhizophores in three Selaginella species. Am J Bot 78:1694–1703CrossRefGoogle Scholar
  20. 20.
    Bateman RM, DiMichele WA, Willard DA (1992) Experimental cladistic analysis of anatomically preserved arborescent lycopsids from the Carboniferous of Euramerica: an essay on paleobotanical phylogenetics. Ann Missouri Bot Gard 79:500–559CrossRefGoogle Scholar
  21. 21.
    Rothwell GW, Erwin DM (1985) The rhizomorph apex of Paurodendron: implications for homologies among the rooting organs of Lycopsida. Am J Bot 72:86–98CrossRefGoogle Scholar
  22. 22.
    Karrfart EE, Eggert DA (1977) The comparative morphology and development of Isoetes L. II. Branching of the base of the corm in I. Tuckermanii A. Br. and I. nuttallii A. Br. Bot Gaz 138:357–368Google Scholar
  23. 23.
    Paollilo JD Jr (1982) Meristems and evolution: developmental correspondence among the rhizomorphs of the lycopsids. Am J Bot 69:1032–1042CrossRefGoogle Scholar
  24. 24.
    Karrfart EE (1984) The origin and early development of the root-producing meristem of Isoetes andicola L. D. Gomez. Bot Gaz 145:372–377CrossRefGoogle Scholar
  25. 25.
    Bierhorst DW (1971) Morphology of vascular plants. Macmillan, New YorkGoogle Scholar
  26. 26.
    Rothwell GW, Pryor JS (1991) Developmental dynamics of arborescent lycophytes— apical and lateral growth in Stigmaria ficoides. Am J Bot 78:1740–1745CrossRefGoogle Scholar
  27. 27.
    Karrfart EE (1984) Further observations on Nathorstiana (Isoetales). Am J Bot 71:1023–1030CrossRefGoogle Scholar
  28. 28.
    Gifford EM, Foster AS (1989) Morphology and evolution of vascular plants, 3rd edn. WH Freeman, New YorkGoogle Scholar
  29. 29.
    Takiguchi Y, Imaichi R, Kato M (1997) Cell division patterns in the apices of subterranean axis and aerial shoot of Psilotum nudum (Psilotaceae): morphological and phylogenetic implications on the subterranean axis. Am J Bot 84:588–596PubMedCrossRefGoogle Scholar
  30. 30.
    Banks HP, Leclercq S, Hueber FM (1975) Anatomy and morphology of Psilophyton dawsonii, sp. n. from the late Lower Devonian of Quebec (Gaspé) and Ontario, Canada. Paleontogr Am 8(48):7–127Google Scholar
  31. 31.
    Doran JB (1980) A new species of Psilophyton from the Lower Devonian of northern New Brunswick, Canada. Can J Bot 58:2241–2262CrossRefGoogle Scholar
  32. 32.
    Edwards D (1994) Towards an understanding of pattern and process in the growth of early vascular plants. In: Ingram DS, Hudson A (eds) Shape and form in plants and fungi. Academic, London, pp 39–59Google Scholar
  33. 33.
    Holloway JE (1918) The prothallus and young plant of Tmesipteris. Trans Proc New Zealand Inst 50:1–44Google Scholar
  34. 34.
    Holloway JE (1921) Further notes on the prothallus, embryo, and young sporophyte of Tmesipteris. Trans Proc New Zealand Inst 53:386–422Google Scholar
  35. 35.
    Holloway JE (1939) The gametophyte, embryo and developing sporophyte of Psilotum triquetrum Sw. Ann Bot (NS) 3:313–336Google Scholar
  36. 36.
    Bierhorst DW (1954) The gametangia and embryo of Psilotum nudum. Am J Bot 41:274–281CrossRefGoogle Scholar
  37. 37.
    Guttenberg H von (1966) Histogenese der Pteridophyten. Gebrüder Borntraeger, Berlin-Nikolassee (Handbuch der Pflanzenanatomie, Band 7, Teil 2)Google Scholar
  38. 38.
    Ogura Y (1972) Comparative anatomy of vegetative organs of the pteridophytes. Gebrüder Borntraeger, Berlin Stuttgart (Handbuch der Pflanzenanatomie, Band 7, Teil 3)Google Scholar
  39. 39.
    Kato M (1983) The classification of major groups of pteridophytes. J Fac Sci Univ Tokyo Sect III 13:263–283Google Scholar
  40. 40.
    Phillips TL, Leisman GA (1966) Paurodendron, a rhizomorphic lycopod. Am J Bot 53:1086–1100CrossRefGoogle Scholar
  41. 41.
    Gottlieb JE, Steeves TA (1961) Development of the bracken fern, Pteridium aquili-num (L.) Kuhn. III. Ontogenetic changes in the shoot apex and in the pattern of differentiation. Phytomorphology 11:230–242Google Scholar
  42. 42.
    Hagemann W, Schulz U (1978) Wedelanlegung und Rhizomverzweigung bei einigen Gleicheniaceae. Bot Jahrb Syst Pflanzengesch Pflanzengeogr 99:380–399Google Scholar
  43. 43.
    Mueller RJ (1982) Shoot morphology of the climbing fern Lygodium (Schizaeaceae): general organography, leaf initiation, and branching. Bot Gaz 143:319–330CrossRefGoogle Scholar
  44. 44.
    Roth I (1963) Histogenese der Luftsprosse und Bildung der “dichotomen” Verzweigungen von Psilotum nudum. Adv Frontiers Plant Sci New Delhi 7:157–180Google Scholar
  45. 45.
    Bierhorst DW (1977) On the stem apex, leaf initiation, and early leaf ontogeny in filicalean ferns. Am J Bot 64:125–152CrossRefGoogle Scholar
  46. 46.
    Philipson WR (1990) The significance of apical meristem in the phylogeny of land plants. Plant Syst Evol 173:17–38CrossRefGoogle Scholar
  47. 47.
    Smith GM (1955) Cryptogamic botany, vol 2. Bryophytes and pteridophytes, 2nd edn. McGraw-Hill, New YorkGoogle Scholar
  48. 48.
    Zimmermann W (1959) Die Phylogenie der Pflanzen, 2nd edn. Gustav Fischer, StuttgartGoogle Scholar
  49. 49.
    Hagemann W (1980) Über den Verzweigungsvorgang bei Psilotum und Selaginella mit Anmerkungen zum Begriff der Dichotomie. Plant Syst Evol 133:181–197CrossRefGoogle Scholar
  50. 50.
    Dengler NG (1983) The developmental basis of anisophylly in Selaginella martensii. I. Initiation and morphology of growth. Am J Bot 70:181–192CrossRefGoogle Scholar
  51. 51.
    Popham RA (1951) Principal types of vegetative shoot apex organization in vascular plants. Ohio J Sci 51:249–270Google Scholar
  52. 52.
    Jacobs WP (1988) Development of procambium, xylem, and phloem in the shoot apex of Selaginella. Bot Gaz 149:64–70CrossRefGoogle Scholar
  53. 53.
    Bhambie S (1957) Studies in pteridophytes, I. The shoot apex of Isoetes coromandeli-ana L. J Ind Bot Soc 36:491–502Google Scholar
  54. 54.
    Sam SJ (1984) The structure of the apical meristem of Isoetes engelmannii, I. riparia and I. macrospora (Isoetales). Bot J Linn Soc 89:77–84CrossRefGoogle Scholar
  55. 55.
    Freeberg JA, Wetmore RH (1967) The Lycopsida—a study in development. Phytomorphology 17:78–91Google Scholar
  56. 56.
    Hueber FM (1992) Thoughts on the early lycopsids and zosterophylls. Ann Missouri Bot Gard 79:474–499CrossRefGoogle Scholar
  57. 57.
    Hébant-Mauri R (1994) Cauline meristems in leptosporangiate ferns: structure, lateral appendages, and branching. Can J Bot 71:1612–1624CrossRefGoogle Scholar
  58. 58.
    McAlpin BW, White RA (1974) Shoot organization in the Filicales: the promeristem. Am J Bot 61:562–579CrossRefGoogle Scholar
  59. 59.
    White RA (1979) Experimental investigations of fern sporophyte development. In: Dyer AF (ed) The experimental biology of ferns. Academic, London, pp 505–549Google Scholar
  60. 60.
    Gifford EM (1983) Concept of apical cells in bryophytes and pteridophytes. Annu Rev Plant Physiol 34:419–440CrossRefGoogle Scholar
  61. 61.
    Imaichi R (1986) Surface-viewed shoot apex of Angiopteris lygodiifolia Ros. (Marat-tiaceae). Bot Mag Tokyo 99:309–317CrossRefGoogle Scholar
  62. 62.
    Imaichi R, Nishida M (1986) Developmental anatomy of the three-dimensional leaf of Botrychium ternatum (Thunb.) Sw. Bot Mag Tokyo 99:85–106CrossRefGoogle Scholar
  63. 63.
    Bierhorst DW (1954) The subterranean sporophytic axes of Psilotum nudum. Am J Bot 41:732–739CrossRefGoogle Scholar
  64. 64.
    Good CW, Taylor TN (1971) The ontogeny of Carboniferous articulates: calamite leaves and twigs. Palaeontogr B 113:137–158Google Scholar
  65. 65.
    Good CW, Taylor TN (1972) The ontogeny of Carboniferous articulates: the apex of Sphenophyllum. Am J Bot 59:617–626CrossRefGoogle Scholar
  66. 66.
    Cutter EG (1971) Plant anatomy. Experiment and interpretation. 2. Organ. Arnold, LondonGoogle Scholar
  67. 67.
    Esau K (1965) Plant anatomy, 2nd edn. Wiley, New YorkGoogle Scholar
  68. 68.
    Steeves TA, Sussex IM (1989) Patterns in plant development, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  69. 69.
    Kramer KU, Green PS (eds) (1990) The families and genera of vascular plants, vol 1. Pteridophytes and gymnosperms. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  70. 70.
    Banks HP (1975) Evolution and plants of the past. Wadsworth, BermontGoogle Scholar
  71. 71.
    Bremer K, Humphries CJ, Mishler BD, Churchill SP (1987) On cladistic relationships in green plants. Taxon 36:339–349CrossRefGoogle Scholar
  72. 72.
    Crane PR (1990) The phylogenetic context of microsporogenesis. In: Blackmore S, Know RB (eds) Microspores: Evolution and ontogeny. Academic, London, pp 11–41Google Scholar
  73. 73.
    Garbary DJ, Renzaglia KS, Duckett JG (1993) The phylogeny of land plants: a cladistic analysis based on male gametogenesis. Plant Syst Evol 188:237–269CrossRefGoogle Scholar
  74. 74.
    Manhart JR (1995) Chloroplast 16S rDNA sequences and phylogenetic relationships of fern allies and ferns. Am Fern J 85:182–192CrossRefGoogle Scholar
  75. 75.
    Raubeson LA, Jansen RK (1992) Chloroplast DNA evidence on the ancient evolutionary split in vascular land plants. Science 255:1697–1699PubMedCrossRefGoogle Scholar
  76. 76.
    Mishler BD, Lewis LA, Buchheim MA, Renzaglia KS, Garbary DJ, Delwiche CF, Zechman FW, Kantz TS, Chapman RL (1994) Phylogenetic relationships of the “green algae” and “bryophytes.” Ann Missouri Bot Gard 81:451–483CrossRefGoogle Scholar
  77. 77.
    Bierhorst DW (1953) Structure and development of the gametophyte of Psilotum nudum. Am J Bot 40:649–658CrossRefGoogle Scholar
  78. 78.
    Whittier DP (1975) The origin of the apical cell in Psilotum gametophytes. Am Fern J 65:83–85CrossRefGoogle Scholar
  79. 79.
    Berthier J (1972) Recherches sur la structure et la déloppement de l’apex du gametophytes feullé des mosses. Rev Bryol Lichénol 38:421–551Google Scholar
  80. 80.
    Crandall-Stotler B (1984) Musci, hepatics and anthocerotes—an essay on analogues. In: Schuster RM (ed) New manual of bryology, vol 2. Hattori Botanical Laboratory, Nichinan, pp 1093–1129Google Scholar
  81. 81.
    Schuster RM (1984) Comparative anatomy and morphology of the Hepaticae. In: Schuster RM (ed) New manual of bryology, vol 2. Hattori Botanical Laboratory, Nichinan, pp 760–891Google Scholar
  82. 82.
    Schuster RM (1984) Morphology, phylogeny and classification of the Anthocerotae. In: Schuster RM (ed) New manual of bryology, vol 2. Hattori Botanical Laboratory, Nichinan, pp 1071–1091Google Scholar
  83. 83.
    Schofield WB, Hébant C (1984) The morphology and anatomy of the moss gametophyte. In: Schuster RM (ed) New manual of bryology, vol 2. Hattori Botanical Laboratory, Nichinan, pp 627–657Google Scholar
  84. 84.
    Crandall-Stotler B (1980) Morphogenetic designs and a theory of bryophyte origins and divergence. BioScience 30:580–585CrossRefGoogle Scholar
  85. 85.
    Basile DV (1990) Morphoregulatory role of hydroxyproline-containing proteins in liverworts. In: Chopra RN, Bhalta SC (eds) Bryophytes: physiology and biochemistry. CRC Press, Boca Raton, pp 225–243Google Scholar
  86. 86.
    Hébant C, Hébant-Mauri R, Barthonnet J (1978) Evidence for division and polarity in apical cells of bryophytes and pteridophytes. Planta 138:49–51CrossRefGoogle Scholar
  87. 87.
    Gifford EM, Kurth E (1983) Quantitative studies of the vegetative shoot apex of Equisetum scirpoides. Am J Bot 70:74–79CrossRefGoogle Scholar
  88. 88.
    Gifford EM, Polito VS (1981) Mitotic activity at the shoot apex of Azolla filiculoides. Am J Bot 68:1050–1055CrossRefGoogle Scholar
  89. 89.
    Takhtajan A (1976) Neoteny and the origin of flowering plants. In: Beck CB (ed) Origin and early evolution of angiosperms. Columbia University Press, New York, pp 207–219Google Scholar
  90. 90.
    Cronquist A (1988) The evolution and classification of flowering plants, 2nd edn. New York Botanical Garden, New YorkGoogle Scholar
  91. 91.
    Doyle JA, Hickey LJ (1976) Pollen and leaves from the Mid-Cretaceous Potomac Group and their bearing on early angiosperm evolution. In: Beck CB (ed) Origin and early evolution of angiosperms. Columbia University Press, New York, pp 139–206Google Scholar
  92. 92.
    Wardlaw CW (1965) Organization and evolution in plants. Longmans, LondonGoogle Scholar
  93. 93.
    Coen ES (1991) The role of homeotic genes in flower development and evolution. Annu Rev Plant Physiol Plant Mol Biol 42:241–279CrossRefGoogle Scholar
  94. 94.
    Purugganan MD, Rounsley SD, Schmidt RJ, Yanofsky MF (1995) Molecular evolution of flower development: diversification of the plant MADS-box regulatory gene family. Genetics 140:345–356PubMedGoogle Scholar
  95. 95.
    Futuyma DJ (1986) Evolutionary biology, 2nd edn. Sinauer Associates, SunderlandGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1997

Authors and Affiliations

  • Masahiro Kato
    • 1
  • Ryoko Imaichi
    • 2
  1. 1.Department of Biological Sciences, Graduate School of ScienceUniversity of TokyoBunkyo-ku, Tokyo 113Japan
  2. 2.Department of Chemical and Biological Sciences, Faculty of ScienceJapan Women’s UniversityBunkyo-ku, Tokyo 112Japan

Personalised recommendations