Relations of Environmental Change to Angiosperm Evolution During the Late Cretaceous and Tertiary

  • Jack A. Wolfe


That morphology of the vegetative body of plants has been—and is continuing to be—shaped by environmental factors is a generally accepted concept. If so, then environmental change must be a significant factor in morphological change in plants. Morphological (used here in the broad sense to include anatomical) change can be equated to evolutionary change, at least relative to the vegetative body of plants.


Late Cretaceous Middle Latitude Middle Eocene Mean Annual Temperature Angiosperm Evolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cronquist A (1981) An integrated system of classification of flowering plants. Columbia University Press, New YorkGoogle Scholar
  2. 2.
    Bailey IW, Sinnott EW (1915) A botanical index of Cretaceous and Tertiary climates. Science 41:831–834PubMedCrossRefGoogle Scholar
  3. 3.
    Richards PW (1952) The tropical rain forest. Cambridge University Press, CambridgeGoogle Scholar
  4. 4.
    Spicer RA (1989) Physiological characteristics of land plants in relation to climate through time. Trans R Soc Edinb 80:321–329CrossRefGoogle Scholar
  5. 5.
    Dolph GE, Dilcher DL (1979) Foliar physiognomy as an aid in determining paleoclimate. Palaeontogr Abt B Palaeophytol 170:151–172Google Scholar
  6. 6.
    Wolfe JA (1993) A method for obtaining climatic parameters from leaf assemblages. U.S. Bull 2040, Geological Survey, Washington, DCGoogle Scholar
  7. 7.
    Dilcher DL (1973) A paleoclimatic interpretation of the Eocene floras of southeastern North America. In: Graham A (ed) Vegetation and vegetational history of northern Latin America. Elsevier, Amsterdam, pp 39–59Google Scholar
  8. 8.
    Wheeler EF, Baas P (1991) A survey of the fossil record for dicotyledonous wood and its significance for evolutionary and ecological wood anatomy. Int Assoc Wood Anat Bull 12:275–332Google Scholar
  9. 9.
    Wolfe JA (1995) Paleoclimatic estimates for Tertiary leaf assemblages. Annu Rev Earth Planet Sci 24:119–142CrossRefGoogle Scholar
  10. 10.
    ter Braak CJF (1992) CANOCO—a FORTRAN program for canonical correspondence ordination. Microcomputer Power, Ithaca, NYGoogle Scholar
  11. 11.
    ter Braak CJF, Prentice IC (1988) A theory of gradient analysis. Adv Ecol Res 18:271–371CrossRefGoogle Scholar
  12. 12.
    Herman AB, Spicer RA (1996) Palaeobotanical evidence for a warm Cretaceous Arctic Ocean. Nature 330:330–333CrossRefGoogle Scholar
  13. 13.
    Doyle JA, Donoghue MJ (1986) Seed plant phylogeny and the origin of angiosperms: an experimental cladistic approach. Bot Rev 52:321–431CrossRefGoogle Scholar
  14. 14.
    Axelrod DI (1952) A theory of angiosperm evolution. Evolution 6:29–30CrossRefGoogle Scholar
  15. 15.
    Crane PR (1987) Vegetational consequence of the angiosperm diversification. In: Friis EM, Chaloner WG, Crane PR (eds) The origin of angiosperms and their biological consequences. Cambridge University Press, Cambridge, pp 107–144Google Scholar
  16. 16.
    Crane PR (1989) Paleobotanical evidence on the early radiation of nonmagnoliid dicotyledons. Plant Syst Evol 162:165–191CrossRefGoogle Scholar
  17. 17.
    Upchurch GR, Wolfe JA (1993) Cretaceous vegetation of the Western Interior and adjacent regions of North America. Geol Assoc Canada Spec Pap 39:243–281Google Scholar
  18. 18.
    Hickey LJ, Wolfe JA (1975) The bases of angiosperm phylogeny: vegetative morphology. Ann MO Bot Gard 62:538–589CrossRefGoogle Scholar
  19. 19.
    Wolfe JA, Doyle JA, Page VM (1975) The bases of angiosperm phylogeny: paleobotany. Ann MO Bot Gard 62:801–824CrossRefGoogle Scholar
  20. 20.
    Doyle JA, Hickey LJ (1976) Pollen and leaves from the mid-Cretaceous Potomac group and their bearing on early angiosperm evolution In: Beck CB (ed) Origin and early evolution of angiosperms. Columbia University Press, New York, pp 139–206Google Scholar
  21. 21.
    Muller J (1981) Fossil pollen records of extant angiosperms. Bot Rev 47:1–142CrossRefGoogle Scholar
  22. 22.
    Stockey RA, Hoffman GL, Rothwell GW (1997) The fossil monocot Limnobiophyllum scutatum (Dawson) Krassilov: resolving phylogeny of the Lemnaceae. Am J Bot 84:355–368PubMedCrossRefGoogle Scholar
  23. 23.
    MacNeal DL (1958) The flora of the Upper Cretaceous Woodbine Sand in Denton County, Texas. Monogr Acad Nat Sci Phila 10:1–152Google Scholar
  24. 24.
    Newberry JS (1895) The flora of the Amboy clays. Monograph 26. U.S. Geological Survey, Washington, DCGoogle Scholar
  25. 25.
    Smith AG, Smith DG, Funnell BM (1994) Atlas of Mesozoic and Cenozoic coastlines. Cambridge University Press, CambridgeGoogle Scholar
  26. 26.
    Wolfe JA, Upchurch GR (1987) North American nonmarine climates during the Late Cretaceous. Palaeogeogr Palaeoclimatol Palaeoecol 61:33–77CrossRefGoogle Scholar
  27. 27.
    Crepet WL, Friis EM, Nixon KC (1991) Fossil evidence for the evolution of biotic pollination. Philos Trans R Soc Lond B Biol Sci 333:187–195CrossRefGoogle Scholar
  28. 28.
    Upchurch GR, Dilcher DL (1990) Cenomanian angiosperm leaf megafossils, Dakota Formation, Rose Creek locality, Jefferson County, southeastern Nebraska. U.S. Bull 1915, Geological Survey, Washington, DCGoogle Scholar
  29. 29.
    Doyle JA (1969) Cretaceous angiosperm pollen of the Atlantic Coastal Plain and its evolutionary significance. J Arnold Arbor Hary Univ 50:1–35Google Scholar
  30. 30.
    Friis EM (1983) Upper Cretaceous (Senonian) floral structure of juglandalean affinity containing Normapolles pollen. Rev Palaeobot Palynol 39:161–188CrossRefGoogle Scholar
  31. 31.
    Wolfe JA (1974) Fossil forms of Amentiferae. Brittonia 25:334–355CrossRefGoogle Scholar
  32. 32.
    Wolfe JA (1976) Stratigraphic distribution of some pollen types from the Campanian and lower Maestrichtian rocks (Upper Cretaceous) of the Middle Atlantic States. U.S. Prof pap 977, Geological Survey, Washington, DCGoogle Scholar
  33. 33.
    Herman AB (1994) Late Cretaceous Arctic platanoids and high latitude climate. In: Boulter MC, Fisher HC (eds) Cenozoic plants and climates of the Arctic. Springer, Berlin, Heidelberg New York, pp 151–159CrossRefGoogle Scholar
  34. 34.
    Spicer RA, Wolfe JA, Nichols DJ (1987) Alaskan Cretaceous-Tertiary floras and Arctic origins. Paleobiology 13:73–83Google Scholar
  35. 35.
    Wolfe JA (1991) Palaeobotanical evidence for a June “impact winter” at the Cretaceous-Tertiary boundary. Nature 352:420–423CrossRefGoogle Scholar
  36. 36.
    Alvarez W, Claeys P, Kieffer SW (1995) Emplacement of Cretaceous-Tertiary boundary shocked quartz from Chicxulub Crater. Science 269:930–935PubMedCrossRefGoogle Scholar
  37. 37.
    Sharpton VL, Ward PD (eds) (1990) Global catastrophes in Earth history. Geol Soc Am Spec Pap 247Google Scholar
  38. 38.
    Silver LT, Schultz PH (eds) (1982) Geological implications of large asteroids and comets on the Earth. Geol Soc Am Spec Pap 190Google Scholar
  39. 39.
    Wolfe JA (1990) Palaeobotanical evidence for a marked temperature increase following the Cretaceous-Tertiary boundary. Nature 343:153–156CrossRefGoogle Scholar
  40. 40.
    Upchurch GR (1989) Terrestrial environmental change and extinction patterns at the Cretaceous-Tertiary boundary, North America. In: Donovan SK (ed) Mass extinctions: processes and evidence. Columbia University Press, New York, pp 195–216Google Scholar
  41. 41.
    Lerbekmo JF, Sweet AR, St Louis RM (1987) The relationship between the itidium anomaly and palynological floral events at three Cretaceous-Tertiary boundary localities in western Canada. Geol Soc Am Bull 99:325–330CrossRefGoogle Scholar
  42. 42.
    Nichols DJ, Fleming RF (1990) Plant microfossil record of the terminal Cretaceous event in the western United States and Canada. Geol Soc Am Spec Pap 247: 445–455Google Scholar
  43. 43.
    Johnson KR, Hickey LJ (1990) Megafloral change across the Cretaceous/Tertiary boundary in the northern Great Plains and Rocky Mountains, USA. Geol Soc Am Spec Pap 247:433–444Google Scholar
  44. 44.
    Frederiksen NO (1989) Changes in floral diversities, floral turnover rates, and climates in Campanian and Maastrichtian time, North Slope of Alaska. Cretaceous Res 10:249–266CrossRefGoogle Scholar
  45. 45.
    Brown RW (1962) Paleocene flora of the Rocky Mountains and Great Plains. Prof pap 375, U.S. Geological Survey, Washington, DCGoogle Scholar
  46. 46.
    Koch BE (1963) Fossil plants from the Lower Paleocene of the Agatdalen (Angmartussut area, central Nûgssuaq Peninsula, northwest Greenland. Meded Grønl 172(5):1–120Google Scholar
  47. 47.
    Boulter MC, Kvacek Z (1989) The Palaeocene flora of the Isle of Mull. Palaeontol Assoc Spec Pap Palaeontol 42Google Scholar
  48. 48.
    McIver EE, Basinger JF (1993) Flora of the Ravenscarg Formation (Paleocene), southwestern Saskatchewan, Canada. Palaeontogr Can 10Google Scholar
  49. 49.
    Saporta G, Marion AF (1878) Revision de la fore heersiennne de Gelinden. Acad R Belg Mém Cour Say 41Google Scholar
  50. 50.
    Berry EW (1916) The lower Eocene floras of southeastern North America. Prof pap 91, U.S. Geological Survey, Washington, DCCrossRefGoogle Scholar
  51. 51.
    Knowlton FH (1917) Fossil floras of the Vermejo and Raton formations of Colorado and New Mexico. US Geol Sury Prof Pap 101:223–455Google Scholar
  52. 52.
    Chandler MEJ (1961) The Lower Tertiary floras of southern England. I. Br Mus (Nat Hist)Google Scholar
  53. 53.
    Chandler MEJ (1964) The Lower Tertiary floras of southern England. IV. Br Mus (Nat Hist)Google Scholar
  54. 54.
    Crane PR (1981) Betulaceous leaves and fruits from the British Upper Palaeocene. Bot J Linn Soc 83:103–136CrossRefGoogle Scholar
  55. 55.
    Haq BU, Hardenbol UJ, Vail PR (1988) Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change. In: Wilgus CK, Hastings BS, St C Kendall CG, Posamentier HW, Ross CA, Wagoner JC (eds) Sea-level changes: an integrated approach. Soc Econ Paleontol Mineral Spec Pub142:71–108Google Scholar
  56. 56.
    Adegoke OS, Jan du Cheêne RE, Agumanu AE (1978) Palynology and age of the Kerri-Kerri Formation, Nigeria. Rev Esp Micropaleontol 10:267–283Google Scholar
  57. 57.
    Herendeen PS, Crepet WL, Dilcher DL (1992) The fossil history of the Leguminosae: phylogenetic and biogeographic implications In: Herendeen PS, Dilcher DL (eds) Advances in legume systematics. Part 4. The fossil record. Royal Botanical Gardens, Kew, pp 303–316Google Scholar
  58. 58.
    Rea DK, Zachos JC, Owen RM, Gingerich PD (1990) Global change at the Paleocene-Eocene boundary: climatic and evolutionary consequences of tectonic events. Palaeogeogr Palaeoclimatol Palaeoecol 79:117–128CrossRefGoogle Scholar
  59. 59.
    Wolfe JA (1985) Distribution of major vegetational types during the Tertiary. In: Sundquist ET, Broecker WS (eds) The carbon cycle and atmospheric CO2: natural variations Archean to present. Monogr 32. American Geophysical Union, Washington, DC, pp 357–376CrossRefGoogle Scholar
  60. 60.
    Tiffney BH (1985) Perspectives on the origin of the floristic similarity between eastern Asia and eastern North America. J Arnold Arbor Hary Univ 66:73–94Google Scholar
  61. 61.
    Tiffney BH (1985) The Eocene North Atlantic land bridge: its importance in Tertiary and modern phytogeography of the Northern Hemisphere. J Arnold Arbor Hary Univ 66:243–273Google Scholar
  62. 62.
    Budantsev LY (1994) The fossil flora of the Paleogene climatic optimum in northeastern Asia. In: Boulter MC, Fisher HC (eds) Cenozoic plants and climates of the Arctic. Springer, Berlin Heidelberg New York, pp 297–313CrossRefGoogle Scholar
  63. 63.
    Wolfe JA (1975) Some aspects of plant geography of the Northern Hemisphere during the Late Cretaceous and Tertiary. Ann MO Bot Gard 62:264–279CrossRefGoogle Scholar
  64. 64.
    Lavin M, Luckow M (1993) Origins and relationships of tropical North America in the context of the boreotropical hypothesis. Am J Bot 80:1–14CrossRefGoogle Scholar
  65. 65.
    Reid EM, Chandler MEJ (1933) The flora of the London Clay. Br Mus (Nat Hist)Google Scholar
  66. 66.
    Wolfe JA, Tanai T (1987) Systematics, phylogeny, and distribution of Acer (maples) in the Cenozoic of western North America. J Fac Sci Hokkaido Univ Ser V Bot 22:1–246Google Scholar
  67. 67.
    Manchester SR (1994) Fruits and seeds of the middle Eocene Nut Beds flora, Clarno Formation, Oregon. Palaeontogr Am 58:205Google Scholar
  68. 68.
    Graham A, Dilcher DL (1995) The Cenozoic record of tropical dry forest in northern Latin America and the southern United States. In: Bullock SH, Mooney HA, Medina E (eds) Seasonally dry tropical forests. Cambridge University Press, Cambridge, pp 124–145CrossRefGoogle Scholar
  69. 69.
    Guo S (1980) Late Cretaceous and Eocene floral provinces. Academia Sinica (Nanjing) Inst Geol Paleontol Rep, p 9Google Scholar
  70. 70.
    Wolfe JA (1988) An overview of the origins of the modern vegetation and flora of the northern Rocky Mountains. Ann MO Bot Gard 74:785–803CrossRefGoogle Scholar
  71. 71.
    Engler A (1882) Versuch einer Entwicklungsgeschichte der extratropischen florengebiete der südlichen Hemisphare and der tropischen gebiete. Engelmann, LeipzigGoogle Scholar
  72. 72.
    Wolfe JA (1992) Climatic, floristic, and vegetational changes near the Eocene/Oligocene boundary in North America. In: Prothero DR, Berggren WA (eds) Eoceneoligocene climatic and biotic evolution. Princeton University Press, Princeton, pp 421–436Google Scholar
  73. 73.
    Wolfe JA (1994) Tertiary climatic changes at middle latitudes of western North America. Palaeogeogr Palaeoclimatol Palaeoecol 108:95–105CrossRefGoogle Scholar
  74. 74.
    Owens JP, Bybel LM, Paulachok G, Ager TA, Gonzalez VM, Sugarman PJ (1988) Stratigraphy of the Tertiary sediments in a 945-foot-deep corehole near Mays Landing in the southeastern New Jersey Coastal Plain. Prof pap 1484. U.S. Geological Survey, Washington, DCGoogle Scholar
  75. 75.
    McClammer JU (1978) Paleobotany and stratigraphy of the Yaquina Flora (latest Oligocene—earliest Miocene) of western Oregon. Master’s thesis, University of Maryland, College ParkGoogle Scholar
  76. 76.
    MacGinitie HD (1937) The flora of the Weaverville beds of Trinity County, California. Carnegie Inst Washington Publ 465:84–156Google Scholar
  77. 77.
    Mai DH (1981) Entwicklung und klimatische Differenzierung der Laubwaldflora Mitteleuropas im Tertiär. Flora (Jena) 171:525–582Google Scholar
  78. 78.
    Wing SL, Hickey LJ, Swisher CC (1993) Implications of an exceptional fossil flora for Late Cretaceous vegetation. Nature 363:342–344CrossRefGoogle Scholar
  79. 79.
    Leopold EB, Liu G, Clay-Poole S (1992) Low-biomass vegetation in the Oligocene? In: Prothero DR, Berggren WA (eds) Eocene-Oligocene climatic and biotic evolution. Princeton University Press, Princeton, pp 382–398Google Scholar
  80. 80.
    Retallack GJ (1992) Paleosols and changes in climate and vegetation acreoss the Eocene/Oligocene boundary. In: Prothero DR, Berggren WA (eds) Eoceneoligocene climatic and biotic evolution. Princeton University Press, Princeton, pp 382–398Google Scholar
  81. 81.
    Wolfe JA (1994) A preliminary analysis of Neogene climates in Beringia. Palaeogeogr Palaeoclimatol Palaeoecol 108:107–115Google Scholar
  82. 82.
    Chaney RW (1959) Miocene floras of the Columbia Plateau, composition and interpretation. Carnegie Inst Washington Publ 617:1–134Google Scholar
  83. 83.
    Tanai T (1992) Tertiary vegetational history of East Asia. Mizunami Fossil Mus Bull 19:125–163Google Scholar
  84. 84.
    Kvacek Z (1994) Connecting links between the Arctic Palaeogene and European Tertiary floras. In: Boulter MC, Fisher HC (eds) Cenozoic plants and climates of the Arctic. Springer, Berlin Heidelberg New York, pp 251–166CrossRefGoogle Scholar
  85. 85.
    Graham A (1995) Development and affinities between Mexican/Central American and northern South American lowland and lower montane vegetation during the Tertiary. In: Churchill SP, et al (eds) Biodiversity and conservation of neotropical montane forests. New York Botanical Garden, New York, pp 11–22Google Scholar
  86. 86.
    Wolfe JA (1994) Alaskan Palaeogene climates as inferred from the CLAMP database. In: Boulter MC, Fisher HC (eds) Cenozoic plants and climates of the Arctic. Springer, Berlin Heidelberg New York, pp 223–237CrossRefGoogle Scholar
  87. 87.
    Takhtajan AL (1980) Outline of the classification of flowering plants (Magnoliophyta). Bot Rev 46:225–359CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1997

Authors and Affiliations

  • Jack A. Wolfe
    • 1
  1. 1.Department of GeosciencesUniversity of ArizonaTucsonUSA

Personalised recommendations