Plant Speciation on Oceanic Islands

  • Daniel J. Crawford
  • Tod F. Stuessy


Few would argue that one of the important questions in evolutionary biology is how morphologically distinguishable groups, commonly recognized as species, evolve or develop through time. Although the process of speciation has been viewed as unknowable because it usually occurs gradually, and one must infer past processes from current observations, there has been renewed interest in speciation during the past decade (Otte and Endler [1], Coyne [2,3], Levin [4], Mayr [5], as examples). Any discussion of systematic evolutionary research to the year 2000 and beyond should give high priority to intensive studies of plant speciation. Attempts to classify modes of speciation and to apply definitions have received considerable attention in recent years (Baum and Donoghue [6], Davis [7] Luckow [8], Mc Dade [9], Olmstead [10], Levin [4] Rieseberg and Brouillet [11], Mallet [12], Gavrilets and Hastings [13]). We will not engage in this discussion in any detail, but will consider the issue when it becomes necessary within the context of the central foci of the chapter. As for the definition of speciation used in this chapter, slight modification and elaboration of the one given by Levin [4] will suffice. Severe reduction in effective gene flow must occur between populations and it becomes permanently disadvantageous for migrants of one species to occupy the same niche as another.


Oceanic Island Adaptive Radiation Hawaiian Island Endemic Genus Island Plant 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Otte D, Endler JA (eds) (1989) Speciation and its consequences. Sinauer, SunderlandGoogle Scholar
  2. 2.
    Coyne JA (1992) Genetics and speciation. Nature 355:511–515PubMedCrossRefGoogle Scholar
  3. 3.
    Coyne JA (1994) Ernst Mayr and the origin of species. Evolution 48:19–30CrossRefGoogle Scholar
  4. 4.
    Levin DA (1993) Local speciation in plants: the rule not the exception. Syst Bot 18:197–208CrossRefGoogle Scholar
  5. 5.
    Mayr E (1993) Fifty years of progress in research on species and speciation. Proc Calif Acad Sci 48:131–140Google Scholar
  6. 6.
    Baum DA, Donoghue MJ (1995) Choosing among alternative “phylogenetic” species concepts. Syst Bot 20:560–573CrossRefGoogle Scholar
  7. 7.
    Davis JI (1995) Species concepts and phylogenetic analysis—introduction. Syst Bot 20:555–559CrossRefGoogle Scholar
  8. 8.
    Luckow M (1995) Species concepts: assumptions, methods and applications. Syst Bot 20:589–605CrossRefGoogle Scholar
  9. 9.
    McDade LA (1995) Species concepts and problems in practice: insight from botanical monographs. Syst Bot 20:606–622CrossRefGoogle Scholar
  10. 10.
    Olmstead RG (1995) Species concepts and pleisiomorphic species. Syst Bot 20:623–630CrossRefGoogle Scholar
  11. 11.
    Rieseberg LH, Brouillet L (1994) Are many plant species paraphyletic? Taxon 43:132CrossRefGoogle Scholar
  12. 12.
    Mallet J (1995) A species definition for the Modern Synthesis. Tr Ecol Evol 10:294–299CrossRefGoogle Scholar
  13. 13.
    Gavrilets S, Hastings A (1996) Founder effect speciation: a theoretical reassessment. Am Nat 147:466–491CrossRefGoogle Scholar
  14. 14.
    Carlquist S (1965) Island life—a natural history of the islands of the world. The Natural History Press, Garden City, New YorkGoogle Scholar
  15. 15.
    Carlquist S (1974) Island biology. Columbia University Press, New YorkGoogle Scholar
  16. 16.
    Gottlieb LD (1973) Genetic differentiation, sympatric speciation and the origin of a diploid species of Stephanomeria. Am J Bot 65:970–982CrossRefGoogle Scholar
  17. 17.
    Lewis H (1973) The origin of diploid neospecies in Clarkia. Am Nat 107:161–170CrossRefGoogle Scholar
  18. 18.
    MacNair MR, Cumbes QT (1989) The genetic architecture of interspecific variation in Mimulus. Genetics 122:211–222PubMedGoogle Scholar
  19. 19.
    Soltis PS, Soltis DE (1995) Plant molecular systematics: inferences of phylogeny and evolutionary processes. In: Hecht MK, Macintyre RJ, Clegg MT (eds) Evol Biol 28:139–194CrossRefGoogle Scholar
  20. 20.
    Templeton AR (1981) Mechanisms of speciation—a population genetic approach. Ann Rev Ecol Syst 12:23–48CrossRefGoogle Scholar
  21. 21.
    Francisco-Ortega J, Jansen RK, Crawford DJ, Santos-Guerra A (1995) Chloroplast DNA evidence for intergeneric relationships of the Macaronesian endemic genus Argyranthemum (Asteraceae). Syst Bot 20:413–422CrossRefGoogle Scholar
  22. 22.
    Francisco-Ortega J, Crawford DJ, Santos-Guerra A, Sa-Fontinha S (1995) Genetic divergence among Mediterranean and Macaronesian genera of the subtribe Chrysantheminae (Asteraceae). Am J Bot 82:1321–1328CrossRefGoogle Scholar
  23. 23.
    Francisco-Ortega J, Crawford DJ, Santos-Guerra A, Carvalho JA (1996) Isozyme differentiation in the endemic genus Argyranthemum (Asteraceae: Anthemideae) in the Macaronesian Islands. Pl Syst Evol 202:137–152CrossRefGoogle Scholar
  24. 24.
    Crawford DJ, Stuessy TF, Silva O.M (1987) Allozyme divergence and the evolution of Dendroseris (Compositae: Lactuceae) on the Juan Fernandez Islands. Syst Bot 12:435–443CrossRefGoogle Scholar
  25. 25.
    Crawford DJ, Stuessy TF, Cosner MB, Haines DW, Silva O.M, Baeza M (1992) Evolution of the genus Dendroseris (Asteraceae: Lactuceae) in the Juan Fernandez Islands: evidence from chloroplast and ribosomal DNA. Syst Bot 17:676–682CrossRefGoogle Scholar
  26. 26.
    Witter MS, Carr GD (1988) Adaptive radiation and genetic differentiation in the Hawaiian silversword alliance (Composite: Madiinae). Evolution 42:1278–1287CrossRefGoogle Scholar
  27. 27.
    Witter MA (1988) Duplicate expression of biochemical gene markers in the Hawaiian silversword alliance (Madiinae: Compositae). Biochem Syst Ecol 16:381–392CrossRefGoogle Scholar
  28. 28.
    Li W-H (1993) So, what about the molecular clock hypothesis? Curr Opin Genet Devel 8:896–901CrossRefGoogle Scholar
  29. 29.
    Carlquist S (1995) Introduction. In: Wagner WL, Funk VA (eds) Hawaiian biogeography—evolution on a hot spot archipelago. Smithsonian Institution, Washington, p 1Google Scholar
  30. 30.
    Givnish TK, Systma KJ, Smith JF, Hahn WJ (1995) Molecular evolution, adaptive radiation, and geographic speciation in Cyanea (Campanulaceae, Lobelioideae). In: Wagner WL, Funk VA (eds) Hawaiian biogeography—evolution on a hot spot archipelago. Smithsonian Institution, Washington, p 288Google Scholar
  31. 31.
    Humphries CJ (1979) Endemism and evolution in Macaronesia. In: Bramwell D (ed) Plants and islands. Academic, London, p 171Google Scholar
  32. 32.
    Gillett GW, Lim EKS (1970) An experimental study of the genus Bidens in the Hawaiian Islands. Univ Calif Pub Bot 56:1–63Google Scholar
  33. 33.
    Carr GD (1985) Monograph of the Hawaiian Madiinae (Asteraceae): ArgyroxiphiuuI, and Wilkesia. Allertonia. 4:1–123Google Scholar
  34. 34.
    Carr GD, Kyhos DW (1986) Adaptive radiation in the Hawaiian silversword alliance (Compositae: Madiinae). II. Cytogenetics of artificial and natural hybrids. Evolution 40:959–976Google Scholar
  35. 35.
    Lowrey TK (1986) A biosystematic revision of Hawaiian Tetramolopium (Compositae: Astereae). Allertonia 4:203–265Google Scholar
  36. 36.
    Fincham JR (1994) Genetic analysis—principles, scope and objectives. Blackwell Science, OxfordGoogle Scholar
  37. 37.
    Doebley J (1995) Genetics, development, and the morphological evolution of maize. In: Hoch PC, Stephenson AG (eds) Experimental and molecular approaches to plant biosystematics, pp 57–70. Monographs Syst Bot Missouri Bot Gard vol 53Google Scholar
  38. 38.
    Doebley J, Stec A (1991) Genetic analysis of the morphological differences between maize and teosinte. Genetics 129:285–295PubMedGoogle Scholar
  39. 39.
    Doebley JA, Stec A (1993) Inheritance of morphological differences between maize and teosinte: comparison of results for two F2 populations. Genetics 134:559–570PubMedGoogle Scholar
  40. 40.
    Vlof EC, Van Houten WH, Mauthe S, Bachmann K (1992) Genetic and nongenetic factors influencing deviations from five pappus parts in a hybrid between Microseris douglasii and M. bigelovii (Asteraceae, Lactuceae). In J Pl Sci 153:89–97Google Scholar
  41. 41.
    Howard DJ (1993) Small populations, inbreeding, and speciation. In: Thornhill NW (ed) The natural history of inbreeding and outbreeding (theoretical and empirical perspectives). University of Chicago Press, Chicago, p 118Google Scholar
  42. 42.
    Grant V (1981) Plant speciation, 2nd edn. Columbia University Press, New YorkGoogle Scholar
  43. 43.
    Levin DA (1978) The origin of isolating mechanisms in flowering plants In: Hecht MK, Steere WC, Wallace B (eds), Evol Biol 11:185–317Google Scholar
  44. 44.
    Lewis H (1953) The mechanism of evolution in the genus Clarkia. Evolution 7:1–20CrossRefGoogle Scholar
  45. 45.
    Lewis H, Roberts MR (1956) The origin of Clarkia lingulata. Evolution 10:126–138CrossRefGoogle Scholar
  46. 46.
    Lewis H, Raven PH (1958) Rapid evolution in Clarkia. Evolution 12:319–336CrossRefGoogle Scholar
  47. 47.
    Lewis H (1961) Experimental sympatric populations of Clarkia. Am Nat 95:155–168CrossRefGoogle Scholar
  48. 48.
    Lewis H (1962) Catastrophic selection as a factor in speciation. Evolution 16:257–271CrossRefGoogle Scholar
  49. 49.
    Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New YorkGoogle Scholar
  50. 50.
    Stebbins GL (1971) Chromosome evolution in higher plants. Arnold, LondonGoogle Scholar
  51. 51.
    Soltis DE, Soltis PS (1993) Molecular data and the dynamic nature of polyploidy. Crit Rev PI Sci 12:243–273Google Scholar
  52. 52.
    Sahuquillo E, Lumaret R (1995) Variation in the subtropical group of Dactylis glomerata L. 1. evidence from allozyme polymorphism. Biochem Syst Ecol 23:407–418CrossRefGoogle Scholar
  53. 53.
    Ownbey M (1950) Natural hybridization and amphiploidy in the genus Tragopogon. Am J Bot 37:487–499CrossRefGoogle Scholar
  54. 54.
    Soltis DE, Soltis PS (1989) Allopolyploid speciation in Tragopagon: insights from chloroplast DNA. Am J Bot 76:1119–1124CrossRefGoogle Scholar
  55. 55.
    Soltis PS, Soltis DE (1991) Multiple origins of the allotetraploid Tragapogon mirus (Compositae): rDNA evidence. Syst Bot 16:407–413CrossRefGoogle Scholar
  56. 56.
    Soltis PS, Doyle JJ, Soltis DE (1992) Molecular and polyploid evolution in plants. In: Soltis PS, Soltis DE, Doyle JJ (eds) Molecular systematics of plants. Chapman and Hall, New York, p 177CrossRefGoogle Scholar
  57. 57.
    Wagner WH (1954) Reticulate evolution in the Appalachian aspleniums. Evolution 8:103–118CrossRefGoogle Scholar
  58. 58.
    Werth CR, Guttman SI, Eshbaugh WH (1985) Electrophoretic evidence for reticulate evolution in the Appalachian Asplenium complex. Syst Bot 10:184–192CrossRefGoogle Scholar
  59. 59.
    Werth CR, Guttman SI, Eshbaugh WH (1985) Recurring origin of allopolyploid species in Asplenium. Science 228:731–733PubMedCrossRefGoogle Scholar
  60. 60.
    King M (1993) Species evolution: the role of chromosome change. Cambridge University Press, CambridgeGoogle Scholar
  61. 61.
    Kyhos DW, Carr GD (1994) Chromosome stability and lability in plants. Evol Theor 10:227–248Google Scholar
  62. 62.
    Rieseberg LH, Ellstrand NC (1993) What can molecular and morphological markers tell us about plant hybridization? Crit Rev Pl Sci 12:213–241Google Scholar
  63. 63.
    Rieseberg LH, Wendel JF (1993) Introgression and its consequences in plants In: Harrison RG (ed) Hybrid zones and the evolutionary process. Oxford University Press, New York, p 70Google Scholar
  64. 64.
    Arnold ML, Bennett BD (1993) Natural hybridization in Louisiana irises: genetic variation and ecological determinants. In: Harrison RG (ed) Hybrid zones and the evolutionary process. Oxford University Press, New York, p 115Google Scholar
  65. 65.
    Arnold ML (1992) Natural hybridization as an evolutionary process. Ann Rev Ecol Syst 23:237–261CrossRefGoogle Scholar
  66. 66.
    Crawford DJ, Whitkus R, Stuessy TF (1987) Plant evolution and speciation on oceanic islands. In: Urbanska K (ed) Differentiation patterns in higher plants. Academic, London, p 183Google Scholar
  67. 67.
    Carr GD (1987) Beggar’s ticks and tarweeds: masters of adaptive radiation. Tr Ecol Evol 2:192–195CrossRefGoogle Scholar
  68. 68.
    Mayer SS (1991) Artificial hybridization in Wikstroemia (Thymelaeaceae). Am J Bot 78:122–130CrossRefGoogle Scholar
  69. 69.
    Borgen L (1976) Analysis of a hybrid swarm between Argyranthemun adaucturn and A. fififolium in the Canary Islands. Norweg J Bot 19:149–170Google Scholar
  70. 70.
    Brochmann C (1984) Hybridization and distribution of Argyranthemun adauctum (Asteraceae—Anthemideae) in the Canary Islands. Nord J Bot 4:729–736CrossRefGoogle Scholar
  71. 71.
    Brochmann C (1987) Evaluation of some methods for hybrid analysis, exemplified by hybridization in Argyranthemum (Asteraceae). Nord J Bot 7:609–630CrossRefGoogle Scholar
  72. 72.
    Francisco-Ortega F, Jansen RK, Santos-Guerra A (1996) Chloroplast DNA evidence of colonization, adaptive radiation, and hybridization in the evolution of the Macaronesian flora. Proc Natl Acad Sci USA 93:4085–4090PubMedCrossRefGoogle Scholar
  73. 73.
    Pacheco P, Stuessy TF, Crawford DJ (1991) Natural hybridization in Gunnera (Gunneraceae) of the Juan Fernandez Islands, Chile. Pac Sci 4:389–399Google Scholar
  74. 74.
    Sanders RW, Stuessy TF, Marticorena C, Silva O.M (1987) Phytogeography and evolution of Dendroseris and Robinsonia, tree-composite of the Juan Fernandez Islands. Opera Bot 92:195–215Google Scholar
  75. 75.
    Ganders FR, Nagata KM (1984) The role of hybridization in the evolution of Bidenson the Hawaiian Islands. In: Grant WF (ed) Plant biosystematics. Academic, Toronto, p 179Google Scholar
  76. 76.
    Carlquist S (1980) Hawaii—a natural history. National Tropical Botanical Garden, Lawa, HawaiiGoogle Scholar
  77. 77.
    Carr GD (1995) A fully fertile intergeneric hybrid derivative from Argyroxiphium sandwicense ssp. macrocephalum X Dubautia menziesii (Asteraceae) and its relevance to plant evolution in the Hawaiian Islands. Am J Bot 82:1574–1581CrossRefGoogle Scholar
  78. 78.
    Crawford DJ (1990) Plant molecular systematics: macromolecular approaches. John Wiley, New YorkGoogle Scholar
  79. 79.
    Crawford DJ, Stuessy TF, Haines DW, Cosner MB, Silva O.M, Lopez P (1992) Allozyme diversity within and divergence among four species of Robinsonia (Asteraceae: Senecioneae), a genus endemic to the Juan Fernandez Islands, Chile. Am J Bot 79:962–966CrossRefGoogle Scholar
  80. 80.
    Crawford DJ, Stuessy TF, Rodriguez R, Rondinelli M (1993) Genetic diversity in Rhaphithamnus venustus (Verbenaceae), a species endemic to the Juan Fernandez Islands. Bull Torrey Bot Club 120:23–28CrossRefGoogle Scholar
  81. 81.
    de Joode DR, Wendel JF (1992) Genetic diversity and origin of the Hawaiian Islands cotton, Gossypium tomentosum. Am J Bot 79:3911–3919Google Scholar
  82. 82.
    Weller SG, Sakai AK, Staub C (1996) Allozyme diversity and genetic identity in Schiedea and Alsinidendron (Caryophyllaceae: Alsinoideae) in the Hawaiian Islands. Evolution 50:23–34Google Scholar
  83. 83.
    Hamrick JL, Godt MJW (1989) Allozyme diversity in plant species. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds) Plant population genetics, breeding, and genetic resources. Sinauer, Sunderland, p 43Google Scholar
  84. 84.
    Carson, HL (1990) Increased genetic variance after a population bottleneck. Tr Ecol Evol 5:228–230CrossRefGoogle Scholar
  85. 85.
    Barton NH, Charlesworth B (1984) Genetic revolutions founder effects, and speciation. Ann Rev Ecol Syst 15:133–164CrossRefGoogle Scholar
  86. 86.
    Barton NH (1989) Founder effect speciation. In: Otte D, Endler JA (eds) Speciation and its consequences. Sinauer, Sunderland, pp 229–256Google Scholar
  87. 87.
    Carson HL, Templeton AR (1984) Genetic revolutions in relation to speciation phenomena: the founding of new populations. Ann Rev Ecol Syst 15:97131CrossRefGoogle Scholar
  88. 88.
    Provine W (1989) Founder effects and genetic revolutions in microevolution and speciation: a historical perspective. In: Giddings LV, Kaneshiro KY, Anderson WW (eds) Genetics, speciation and the founder principle. Oxford University Press, New York, p 43Google Scholar
  89. 89.
    Mayr E (1942) Systematics and the origin of species. Columbia University Press, New YorkGoogle Scholar
  90. 90.
    Gottlieb LD (1984) Genetics and morphological evolution in plants. Am Nat 123:681–709CrossRefGoogle Scholar
  91. 91.
    Ford VS, Gottlieb LD (1992) bicalyx is a natural homeotic floral variant. Nature 358:671–673Google Scholar
  92. 92.
    Sanders RW, Stuessy TF, Rodriguez R (1983) Chromosome numbers from the flora of the Juan Fernandez Islands. Am J Bot 70:799–810CrossRefGoogle Scholar
  93. 93.
    Eliasson U (1974) Studies in Galapagos plants. XIV. The genus Scalesia. Arn Opera Botanica 36:1–117Google Scholar
  94. 94.
    Helenurm K, Ganders FR (1985) Adaptive radiation and genetic differentiation in Hawaiian Bidens. Evolution 39:753–765CrossRefGoogle Scholar
  95. 95.
    Gottlieb LD (1982) Conservation and duplication of isozmes in plants. Science 216:373–380PubMedCrossRefGoogle Scholar
  96. 96.
    Weeden NF, Wendel JF (1990) Genetics of plant isozymes. In: Soltis DE, Soltis PS (eds) Isozymes in plant biology. Dioscorides, Portland, p 46Google Scholar
  97. 97.
    Carr GD (1978) Chromosome numbers of Hawaiian flowering plants and the significance of cytology in selected taxa. Am J Bot 65:236–242CrossRefGoogle Scholar
  98. 98.
    Lammers TG (1988) Chromosome numbers and their systematic implications in Hawaiian Lobelioideae (Companulaceae). Am J Bot 75:1130–1134CrossRefGoogle Scholar
  99. 99.
    Kim S-C, Crawford DJ, Francisco-Ortega J, Santos-Guerra F (1996) A common origin for woody Sonchus and five related genera in the Macaronesian Islands: molecular evidence for extensive radiation. Proc Natl Acad Sci USA 93:7743–7748PubMedCrossRefGoogle Scholar
  100. 100.
    Baldwin BG, Robichaux RH (1995) Historical biogeography and ecology of the Hawaiian silversword alliance (Asteraceae)—new molecular phylogenetic perspectives. In: Wagner WL, Funk VA (eds) Hawaiian biogeography—evolution on a hot spot archipelago. Smithsonian Institution, Washington, p 285Google Scholar
  101. 101.
    Lowrey TK (1995) Phylogeny, adaptive radiation, and biogeography of Hawaiian Tetramolopium (Asteraceae: Astereae). In: Wagner WL, Funk VA (eds) Hawaiian biogeography—evolution on a hot spot archipelago. Smithsonian Institution, Washington, p 195Google Scholar
  102. 102.
    Wagner WL, Weller SG, Sakai AK (1995) Phylogeny and biogeography in Schiedea and Alsinidendron (Caryophyllaceae). In: WL Wagner, Funk VA (eds) Hawaiian biogeography-evolution on a hot spot archipelago. Smithsonian Institution, Washington, p 221Google Scholar
  103. 103.
    Robichaux RH (1984) Variation in the tissue water relations of two sympatric Hawaiian Dubautia species and their natural hybrid. Oceologia 65:75–81CrossRefGoogle Scholar
  104. 104.
    Robichaux RH, Carr GD, Liebman M, Percy RW (1990) Adaptive radiation of the silversword alliance (Compositae: Madiinae): ecological, morphological, and physiological diversity. Ann Missouri Bot Gard 77:64–72CrossRefGoogle Scholar
  105. 105.
    McCarthy EM, Asmussen MA, Anderson WW (1995) A theoretical assessment of recombinational speciation. Heredity 74:502–509CrossRefGoogle Scholar
  106. 106.
    Rice WR, Hostert EE (1993) Laboratory experiments on speciation: what have we learned in 40 years? Evolution 47:1637–1653CrossRefGoogle Scholar
  107. 107.
    Templeton AR (1996) Experimental evidence for the genetic transilience model of speciation. Evolution 50:909–915CrossRefGoogle Scholar
  108. 108.
    Grant V (1966) Selection for vigor and fertility in the progeny of a highly sterile species hybrid in Gilia. Genetics 53:757–775PubMedGoogle Scholar
  109. 109.
    Grant V (1966) The origin of a new species of Gilia in a hybridization experiment. Genetics 54:1189–1199PubMedGoogle Scholar
  110. 110.
    Heiser CB (1947) Hybridization between the sunflower species Helianthus annuus and H. petiolaris. Evolution 1:249–262CrossRefGoogle Scholar
  111. 111.
    Heiser CB (1958) Three new annual sunflowers (Helianthus) from the southwestern United States. Rhodora 60:272–283Google Scholar
  112. 112.
    Rieseberg LH (1991) Homoploid reticulate evolution in Helianthus: evidence from ribosomal genes. Am J Bot 78:1218–1237CrossRefGoogle Scholar
  113. 113.
    Rieseberg LH, Beckstrom-Sternberg S, Doan K (1990) Helianthus annuus ssp. texanus has chloroplast DNA and nuclear ribosomal RNA genes of Helianthus debilis ssp cucumerifolius. Proc Natl Acad Sci USA 87:593–597Google Scholar
  114. 114.
    Rieseberg LH, Carter R, Zona S (1990) Molecular tests of the hypothesized hybrid origin of two diploid Helianthus species. Evolution 44:1498–1511CrossRefGoogle Scholar
  115. 115.
    Rieseberg LH, Choi H, Chan R, Spore C (1993) Genomic map of a diploid hybrid species. Heredity 70:285–293CrossRefGoogle Scholar
  116. 116.
    Rieseberg LH, Sinervo B, Linder CR, Ungerer MC, Arias DM (1996) Role of gene interactions in hybrid speciation: evidence from ancient and experimental hybrids. Science 272:741–745PubMedCrossRefGoogle Scholar
  117. 117.
    Gottlieb LD (1977) Phenotypic variation in Stephanomeria exiguassp. coronaria (Compositae) and its recent derivative species “Malheurensis”. Am J Bot 64:873–880CrossRefGoogle Scholar
  118. 118.
    Gottlieb LD (1979) The origin of phenotype in a recently evolved species. In: Solbrig OT, Jain S, Johnson GB, Raven PH (eds) Topics in plant population biology. Columbia University Press, New York, p 264Google Scholar
  119. 119.
    Gottlieb LD, Bennett JP (1983) Interference between individuals in pure and mixed cultures of Stephanomeria malheurensis and its progenitor. Am J Bot 70:276–284CrossRefGoogle Scholar
  120. 120.
    Brauner S, Gottlieb LD (1989) Response to selection for time of bolting in Stephanomeria exigua ssp. coronaria and implications for the origin of S. malheureusis (Asteraceae). Sys Bot 14:516–524Google Scholar
  121. 121.
    MacNair MR (1983) The genetic control of copper tolerance in the yellow monkey flower, Mimulus guttatus. Heredity 50:283–293CrossRefGoogle Scholar
  122. 122.
    Christie P, MacNair MR (1984) Complementary lethal factors in two North American populations of the yellow monkey flower. J Hered 75:510–511Google Scholar
  123. 123.
    Roberston AW, Diaz A, MacNair MR (1994) The quantificative genetics of floral characters in Mimulus guttatus. Heredity 72:300–311CrossRefGoogle Scholar
  124. 124.
    Sang T, Crawford DJ, Stuessy TF, Silva O.M (1995) ITS sequences and the phylogeny of the genus Robinsonia (Asteraceae). Syst Bot 20:55–64CrossRefGoogle Scholar
  125. 125.
    Sang T, Crawford DJ, Kim S-C, Stuessy TF (1994) Radiation of the endemic genus Dendroseris (Asteraceae) on the Juan Fernandez Islands: evidence from sequences of the ITS region of the nuclear ribosomal DNA. Am J Bot 81:1494–1501CrossRefGoogle Scholar
  126. 126.
    Coyne J, Orr HA (1992) The genetics of adaptation—a reassessment. Am Nat 140:725–742PubMedCrossRefGoogle Scholar
  127. 127.
    Doyle JJ (1994) Evolution of a plant homectic multigene family: toward connecting molecular systematics and molecular developmental genetics. Syst Biol 43:307–328Google Scholar
  128. 128.
    Purugganan MD, Rounsley SD, Schmidt RJ, Yanofsky MF (1995) Molecular evolution of flower development: diversification of the plant MADS-box regulatory gene family. Genetics 140:345–356PubMedGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1997

Authors and Affiliations

  • Daniel J. Crawford
    • 1
  • Tod F. Stuessy
    • 2
  1. 1.Department of Plant BiologyThe Ohio State UniversityColumbusUSA
  2. 2.Institut für BotanikUniversität WienViennaAustria

Personalised recommendations