Chromosomal Evolution of Angiosperms

  • Hiroshi Okada


At the beginning and developing stages of cytological studies, cytotaxonomists have discussed mainly the interrelationships among taxa based on the observations of somatic metaphase chromosomes or chromosome pairings in meiosis [1–4]. These ordinal cytological characters used are mainly the chromosome numbers and the chromosome shapes, which are very stable within taxa. On the other hand, the genome analysis originated by Kihara and his schools has clarified the relations among chromosome complements, chromosome behavior in meiosis and gamete fertility, based mainly on observations of Triticum [5]. These approaches are still effective methods to understand the biosystematic aspects. All the higher plants have to generate fertile offspring, which arise from mating between female and male gametes or from parthenogenesis, or they could not persist. In some cases, it is very difficult to understand the speciation mechanisms without cytogenetic analysis.


Chromosome Number Nucleolar Organize Region Chromosomal Evolution Secondary Constriction Salivary Gland Chromosome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Langlet O (1932) Uber Chromosomenverhaltnisse und Systematik der Ranunculaceae. Sven Bot Tidskr 26:381–400Google Scholar
  2. 2.
    Gregory WC (1941) Phylogenetic and cytological studies in the Ranunculaceae. Trans Am Philos Soc 31:443–521CrossRefGoogle Scholar
  3. 3.
    Darlington CD (1956) Chromosome botany and the origins of cultivated plants. Hafner, New YorkGoogle Scholar
  4. 4.
    Stebbins GL (1971) Chromosomal evolution in higher plants. Arnold, LondonGoogle Scholar
  5. 5.
    Kihara H (1924) Cytologische und genetische Studien bei wichtigen Getreidearten mit besonderer Rucksicht auf das Verhalten der Chromosomen und die Sterilitat in den Bastarden. Mem Coll Sci Kyoto Imp Univ B 1:1–200Google Scholar
  6. 6.
    Tanaka R (1971) Types of resting nuclei in Orchidaceae. Bot Mag Tokyo 84:118–122Google Scholar
  7. 7.
    Okada H (1995) Karyological studies of four genera of the Chloranthaceae. Plant Syst Evol 195:177–185CrossRefGoogle Scholar
  8. 8.
    Zurawski G, Clegg MT (1993) rbcL sequence data and phylogenetic reconstruction in seed plants: foreword. Ann Missouri Bot Gard 80:523–525Google Scholar
  9. 9.
    Earnshaw WC, Sullivan K, Machlin PS, Cooke CA, Kaiser DA, Pollard TD, Rothfield NF, Cleveland DW (1987) Molecular cloning of cDNA for CENP-B, the major human centromere autoantigen. J Cell Biol 104:817–829PubMedCrossRefGoogle Scholar
  10. 10.
    Masumoto H, Matukata H, Moro Y, Nozaki N, Okazaki T (1989) A human centromere antigen (CENP-B) interacts with a short specific sequence in alphoid DNA, a human centromeric satellite. J Cell Biol 109:1963–1973PubMedCrossRefGoogle Scholar
  11. 11.
    Willard HF (1990) Centromeres of mammalian chromosomes. Trends Genet 6:410PubMedCrossRefGoogle Scholar
  12. 12.
    Earnshaw WC, Bernat RL (1991) Chromosomal passengers: toward an integrated view of mitosis. Chromosoma (Berl) 100:139–146CrossRefGoogle Scholar
  13. 13.
    Grant V (1981) Plant speciation. Columbia University Press, New YorkGoogle Scholar
  14. 14.
    King M (1993) Species evolution. The role of chromosome change. Cambridge University Press, CambridgeGoogle Scholar
  15. 15.
    Shimotomai N (1933) Zur Karyogenetik der Gattung Chrysanthemum. J Sci Hiroshima Univ Ser B Div 2 (Bot) 2:1–100Google Scholar
  16. 16.
    Tateoka T (1986) Cytogeographical analysis of the grass genus Calamagrostis (Poaceae) in Japan. In: Iwatsuki K, Raven PH, Bock WJ (eds) Modern aspects of species. University of Tokyo Press, Tokyo, pp 107–123Google Scholar
  17. 17.
    Morita T, Sterk AA, Nijs JCM (1990) The significance of agamospermous triploid pollen donors in the sexual relationships between diploids and triploids in Taraxacum (Compositae). Plant Species Biol 5:167–176CrossRefGoogle Scholar
  18. 18.
    Lin SJ, Kato M, Iwatsuki K (1992) Diploid and triploid offspring of triploid agamosporous fern Dryopteris pacifica. Bot Mag Tokyo 105:443–452CrossRefGoogle Scholar
  19. 19.
    Babcock EB (1947) The genus Crepis, I and II. Univ Calif Publ Bot 21, 22:1–1030Google Scholar
  20. 20.
    Jones RN (1975) B-chromosome systems in flowering plants and animal species. Int Rev Cytol 40:1–100PubMedCrossRefGoogle Scholar
  21. 21.
    Jones RN, Rees H (1982) B chromosomes. Academic Press, LondonGoogle Scholar
  22. 22.
    Hotta M, Okada H, Ito M (1985) Species diversity at wet tropical environment. I. Polymorphic variation and population structure of Schismatoglottis lancifolia (Araceae) in West Sumatra. Contrib Biol Lab Kyoto Univ 27:9–71Google Scholar
  23. 23.
    Okada H (1992) Population diversity of Schismatoglottis irrorata (Araceae) at Malesian wet tropics with reference to the distribution of B chromosome. Cytologia (Tokyo) 57:401–407CrossRefGoogle Scholar
  24. 24.
    Bickmore WA, Sumner AT (1989) Mammalian chromosome banding: an expression of genome organization. Trends Genet 5:144–148PubMedCrossRefGoogle Scholar
  25. 25.
    Rayburn AL, Gill BS (1985) Use of biotin-labeled probes to MAP specific DNA sequences on wheat chromosomes. J Hered 76:78–81Google Scholar
  26. 26.
    Ambros PF, Matzke MA, Matzke AJM (1989) Detection of a 17-kb unique sequence (T-DNA) in plant chromosomes by in situ hybridization. Chromosoma (Berl) 94:18Google Scholar
  27. 27.
    Blackburn EH (1991) Structure and function of telomeres. Nature 350:569–573PubMedCrossRefGoogle Scholar
  28. 28.
    Hizume M (1994) Allodiploid nature of Allium wakeqi Araki revealed by genomic in situ hybridization and localization of 5S and 18S rDNAs. Jpn J Genet 69:407–415PubMedCrossRefGoogle Scholar
  29. 29.
    Rayburn AL, Gill BS (1985) Molecular evidence for the origin and evolution of chromosome 4A in polyploid wheats. Can J Genet Cytol 27:246–250Google Scholar
  30. 30.
    Rayburn AL, Gill BS (1986) Molecular identification of the D-genome chromosomes of wheat. J Hered 77:253–255Google Scholar
  31. 31.
    Lapitan NLV, Sears RG, Rayburn AL, Gill BS (1986) Wheat-rye translocations. Detection of chromosome breakpoints by in situ hybridization with a biotin-labeled DNA probe. J Hered 77:415–419Google Scholar
  32. 32.
    Bergey DR, Stelly DM, Price HJ, McKnight TD (1989) In situ hybridization of biotinylated DNA probes to cotton meiotic chromosomes. Stain Technol 64:25–37PubMedGoogle Scholar
  33. 33.
    Wu HK, Chung MC, Wu T, Ning CN, Wu R (1991) Localization of specific repetitive DNA sequences in individual rice chromosomes. Chromosoma (Berl) 100:330–338CrossRefGoogle Scholar
  34. 34.
    Haga T, Noda S (1976) Cytogenetics of the Scilla scilloides complex. I. Karyotype, genome, and population. Genetica (Dordr) 46:161–176CrossRefGoogle Scholar
  35. 35.
    Fukuda I, Channell RB (1975) Distribution and evolutionary significance of chromosome variation in Trillium ovatum. Evolution 29:257–266CrossRefGoogle Scholar
  36. 36.
    Noguchi J (1986) Geographical and ecological differentiation in the Hemerocallis dumortierii complex with special reference to its karyology. J Sci Hiroshima Univ Ser B Div 2 (Bot) 20:29–193Google Scholar
  37. 37.
    Okada H (1991) Correspondence of Giemsa C-band with DAPI/CMA fluorochrome staining pattern in Aconitum sanyoense (Ranunculaceae). Cytologia (Tokyo) 56:135–141CrossRefGoogle Scholar
  38. 38.
    Kita Y, Ueda K, Kadota Y (1995) Molecular phylogeny and evolution of the Asian Aconitum subgenusAconitum (Ranunculaceae). J Plant Res 108:429–442CrossRefGoogle Scholar
  39. 39.
    Fujishima H, Kurita M (1974) Chromosome studies in Ranunculaceae. XXVI. Variation in karyotype of Ranunculus ternatusvar. qlaber. Mem Ehime Univ Ser B (Biol) 7:62–68Google Scholar
  40. 40.
    Okada H, Tamura M (1977) Chromosome variations in Ranunculus quelpaertensis and its allied species. J Jpn Bot 52:360–369Google Scholar
  41. 41.
    Okada H (1981) On sexual isolation caused by karyotype variations in Ranunculus silerifolius Lev. J Jpn Bot 56:41–49Google Scholar
  42. 42.
    Okada H (1984) Polyphyletic allopolyploid origin of Ranunculus cantoniensis (4x) from R. silerifolius (2X) X R. chinensis (2X). Plant Syst Evol 148:89–102CrossRefGoogle Scholar
  43. 43.
    Okada H (1989) Cytogenetical changes of offsprings from the induced tetraploid hybrid between Ranunculus silerifolius (2n = 16) and R. chinensis (2n = 16) (Ranunculaceae). Plant Syst Evol 167:129–136CrossRefGoogle Scholar
  44. 44.
    Okada H (1975) Karyomorphological studies on woody Polycarpicae. J Sci Hiroshima Univ Ser B Div 2 (Bot) 15:115–200Google Scholar
  45. 45.
    Berendes HD (1965) Salivary gland function and chromosomal puffing patterns in Drosophila hydei. Chromosoma (Berl) 17:35–77CrossRefGoogle Scholar
  46. 46.
    Cooper KW (1959) Cytogenetic analysis of major heterochromatic elements (especially XH and Y) in Drosophila melanogaster and the theory of “heterochromatin.” Chromosoma (Berl) 10:535–588CrossRefGoogle Scholar
  47. 47.
    Hirahara S (1980) Karyomorphological studies on somatic tissues in Spiranthes sinensis. J Sci Hiroshima Univ Ser B Div 2 (Bot) 17:9–49Google Scholar
  48. 48.
    Miller G, Berlowitz L, Regelson W (1971) Chromatin and histones in mealy bug explants: activation and decondensation of facultative heterochromatin by a synthetic polyanion. Chromosoma (Berl) 32:251–261CrossRefGoogle Scholar
  49. 49.
    Holmgren P, Johanson T, Lambertsson A, Rasmuson B (1985) Content of histone H1 and histone phosphorylation in relation to the higher order structures of chromatin in Drosophila. Chromosoma (Berl) 93:123–131CrossRefGoogle Scholar
  50. 50.
    Lin R, Cook RG, Allis CD (1991) Proteolytic removal of core histone amino termini and dephosphorylation of histone H1 correlated with the formation of condensed chromatin and transcriptional silencing during Tetrahmena macronuclear development. Genes Dev 5:1601–1610PubMedCrossRefGoogle Scholar
  51. 51.
    Roth SY, Allis CD (1992) Chromatin condensation: does histone H1 dephosphorylation play a role? Trends Biochem Sci 17:93–98PubMedCrossRefGoogle Scholar
  52. 52.
    Haaf T, Dominguez-Steglich M, Schmid M (1990) Immunocytogenetics. VI. A nonhistone antigen is cell type specifically associated with constitutive heterochromatin and reveals condensation centers in metaphase chromosomes. Cytogenet Cell Genet 54:121–126PubMedCrossRefGoogle Scholar
  53. 53.
    Tsukaya H (1995) The genetic control of morphogenesis in Arabidopsis and its relevance to the development of biodiversity. In: Arai R, Kato M, Doi Y (eds) Biodiversity and evolution. National Science Museum Foundation, Tokyo, pp 253–265Google Scholar

Copyright information

© Springer-Verlag Tokyo 1997

Authors and Affiliations

  • Hiroshi Okada
    • 1
  1. 1.Botanical Gardens, Faculty of ScienceOsaka City University2000 KisaichiKatano Osaka 576Japan

Personalised recommendations