Advertisement

Stomach Cancer and Apoptosis: A Review

  • Hisao Ito
  • Masato Ishida
  • Satoshi Ohfuji
  • Mitsuhiko Osaki
  • Hisae Hayashi
  • Shigeru Tatebe

Summary

Apoptosis is a distinct form of cell death, distinguishable from necrosis. It is a natural, active process by which cells are eliminated from normal or neoplastic tissue. We describe apoptotic cells in human gastric mucosa, adenomas, and carcinomas with special reference to the role of the p53 gene. Apoptosis plays a role in the morphogenesis of gastritis mucosa, including intestinal metaplasia to eliminate unnecessary or possibly DNA-damaged cells. The frequent occurrence of apoptosis in gastric adenomas may reflect their rather static nature. Apoptosis correlates with proliferative activity and tumorigenesis of gastric carcinoma, in which the apoptotic index (AI) correlates with the histologic type and depth of invasion. Gastric carcinoma with lymphoid stroma (GCLS) demonstrated the lowest AI among the histologic types. This fact might partly correlate with their favorable postoperative prognosis of GCLS compared with ordinary gastric carcinomas. Although the mutated p53 gene attenuates apoptotic cell death, apoptosis of gastric cancer cells occurs in a cell cycle-dependent and a cell cycle-independent manner in vivo. Anticancer agents, transforming growth factor beta, and antiFas antibody variably induce apoptosis in the various human gastric cancer cell lines. In fact, preoperative administration of 5-fluorouracil significantly increased the number of apoptotic cancer cells. Thus apoptosis plays a crucial role in the tumorigenesis and progression of human gastric carcinoma. Selective induction of apoptosis of cancer cells is undoubtedly the best way to treat gastric cancer patients. Further studies should be conducted to clarify variable pathways of signal transduction, which might show a diverse spectrum of biologic effects depending on the apoptosis-inducible agents.

Keywords

Gastric Cancer Gastric Carcinoma Gastric Cancer Cell Intestinal Metaplasia Apoptotic Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kerr JFR, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257PubMedCrossRefGoogle Scholar
  2. 2.
    Wyllie AH, Morris RG, Smith AL, Dunlop D (1984) Chromatin cleavage in apoptosis: association with condensed chromatin morphology and dependence on macromolecular synthesis. J Pathol 142:67–77PubMedCrossRefGoogle Scholar
  3. 3.
    Kerr JFR, Winterford CM, Harmon BV (1994) Apoptosis: its significance in cancer and cancer therapy. Cancer 73:2013–2026PubMedCrossRefGoogle Scholar
  4. 4.
    Payne CM, Bernstein H, Bernstein C, Garewal H (1995) Role of apoptosis and pathology: resistance to apoptosis in colon carcinogenesis. Ultrastruct Pathol 19:221–248PubMedCrossRefGoogle Scholar
  5. 5.
    Majno G, Joris I (1995) Apoptosis, oncosis, and necrosis: an overview of cell death. Am J Pathol 146:3–15PubMedGoogle Scholar
  6. 6.
    Clarke AR, Purdie CA, Harrison DJ, Morris RG, Bird CC, Hooper ML, Wyllie AH (1993) Thymocyte apoptosis induced by p53-dependent and -independent pathways. Nature 362:849–852PubMedCrossRefGoogle Scholar
  7. 7.
    Sierra A, Lloveras B, Castellsague X, Moreno L, Garcia-Ramirez M, Fabra A (1995) bcl-2 expression is associated with lymph-node metastasis in human ductal breast carcinoma. Int J Cancer 60:54–60PubMedCrossRefGoogle Scholar
  8. 8.
    Sincrope FA, Ruan SB, Cleary KR, Stephens LC, Lee JJ, Levin B (1995) bcl-2 and p53 oncoprotein expression during colorectal tumorigenesis. Cancer Res 55:237–241Google Scholar
  9. 9.
    Finlay CA, Hinds PW, Tan TH, Eliyahu D, Oren M, Levine AJ (1988) Activating mutations for transformation by p53 produce a gene product that forms an hsc70-p53 complex with an altered halflife. Mol Cell Biol 8:531–539PubMedGoogle Scholar
  10. 10.
    Bursch W, Paffe S, Putz B, Barthel G, Schulte-Hermann R (1990) Determination of the length of the histological stages of apoptosis in normal liver and in altered hepatic foci of rats. Carcinogenesis 11:847–853PubMedCrossRefGoogle Scholar
  11. 11.
    Del Vecchio MT, Leoncini L, Buerki K, Kraft R, Megha T, Barbini P, Tosi P, Cottier H (1991) Diffuse centrocytic and/or centroblastic malignant non-Hodgkin’s lymphomas: comparison of mitotic and pyknotic (apoptotic) indices. Int J Cancer 47:38–43PubMedCrossRefGoogle Scholar
  12. 12.
    Leoncini L, Del Vecchio MT, Megha T, Barbini P, Galieni P, Pileri S, Sabattini E, Gherlinzoni F, Tosi P, Kraft R, Cottier H (1993) Correlations between apoptotic and proliferative indices in malignant non-Hodgkin’s lymphomas. Am J Pathol 142:755–763PubMedGoogle Scholar
  13. 13.
    Montironi R, Galluzzi CM, Scarpelli M, Giannulis I, Diamanti L (1993) Occurrence of cell death (apoptosis) in prostatic intraepithelial neoplasia. Virchows Arch [Pathol Anat] 423:351–357CrossRefGoogle Scholar
  14. 14.
    Aihara M, Truong LD, Dunn JK, Wheeler TM, Scardino PT, Thompson TC (1994) Frequency of apoptotic bodies positively correlates with Gleason grade in prostate cancer. Hum Pathol 25:797–801PubMedCrossRefGoogle Scholar
  15. 15.
    Gaffney EF (1994) The extent of apoptosis in different types of high grade prostatic carcinoma. Histopathology 25:269–273PubMedCrossRefGoogle Scholar
  16. 16.
    Tatebe S, Ishida M, Kasagi N, Tsujitani S, Kaibara N, Ito H (1996) Apoptosis occurs more frequently in metastatic foci than in primary lesions of human colorectal carcinomas: analysis by terminaldeoxynucleotidyl-transferase-mediated dUTP-biotin nick end labeling. Int J Cancer 65:173–177PubMedCrossRefGoogle Scholar
  17. 17.
    Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119:493–501PubMedCrossRefGoogle Scholar
  18. 18.
    Ansari B, Coates PJ, Greenstein BD, Hall PA (1993) In situ end-labelling detects DNA strand breaks in apoptosis and other physiological and pathological states. J Pathol 170:1–8PubMedCrossRefGoogle Scholar
  19. 19.
    Wijsman JH, Jonker RR, Keijzer R, Van De Velde CJH, Cornelisse CJ, Van Dierendonck JH (1993) A new method to detect apoptosis in paraffin sections: in situ end-labeling of fragmented DNA. J Histochem Cytochem 41:7–12PubMedCrossRefGoogle Scholar
  20. 20.
    Gorczyca W, Gong J, Darzynkiewicz Z (1993) Detection of DNA strand breaks in individual apoptotic cells by the in situ terminal deoxynucleotidyl transferase and nick translation assays. Cancer Res 53:1945–1951PubMedGoogle Scholar
  21. 21.
    Kasagi N, Gomyo Y, Shirai H, Tsujitani S, Ito H (1994) Apoptotic cell death in human gastric carcinoma. Jpn J Cancer Res 85:939–945PubMedCrossRefGoogle Scholar
  22. 22.
    Ishida M, Gomyo Y, Tatebe S, Ohfuji S, Ito H (1996) Apoptosis in human gastric mucosa, chronic gastritis, dysplasia and carcinoma: analysis by terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick end labeling (TUNEL). Virchows Arch 428:229–235PubMedGoogle Scholar
  23. 23.
    Gomyo Y, Osaki M, Ito H (1996) Frequent occurrence of cell death in gastric adenomas: comparison between apoptosis and mitosis. Yonago Acta Med 39:49–58Google Scholar
  24. 24.
    Ohfuji S, Osaki M, Tsujitani S, Ikeguchi M, Kaibara N, Sairenji T, Ito H (1996) Low frequency of apoptosis in Epstein-Barr virus-associated gastric carcinoma with lymphoid stroma. Int J Cancer 68:710–715PubMedCrossRefGoogle Scholar
  25. 25.
    Ishida M, Gomyo Y, Ohfuji S, Ikeda M, Ito H (1997) In vivo evidence that mutated p53 gene ex pression attenuates apoptotic cell death in human gastric carcinoma. Jpn J Cancer Res (in press)Google Scholar
  26. 26.
    Matsukura N, Suzuki K, Kawachi T, Aoyagi M, Sugimura T, Kiraoka H, Nakajima H, Shirota A, Itabashi M, Hirota T (1980) Distribution of marker enzymes and mucin in intestinal metaplasia to minute gastric carcinomas. J Natl Cancer Inst 65:231–240PubMedGoogle Scholar
  27. 27.
    Shiao YH, Rugge M, Correa P, Lehmann HP, Scheer WD (1994) p53 alteration in gastric precancerous lesions. Am J Pathol 144:511–517PubMedGoogle Scholar
  28. 28.
    Ochiai A, Yamauchi Y, Hirohashi S (1996) p53 mutations in the non-neoplastic mucosa of the human stomach. Int J Cancer 69:28–33PubMedCrossRefGoogle Scholar
  29. 29.
    Gomyo Y, Osaki M, Kaibara N, Ito H (1996) Numerical aberration and point mutation of p53 gene in human gastric intestinal metaplasia and well-differentiated adenocarcinoma: analysis by fluorescence in situ hybridization (FISH) and PCR-SSCP. Int J Cancer 66:594–599PubMedCrossRefGoogle Scholar
  30. 30.
    Morson BC, Sobin LH, Grundmann E, Johansen A, Nagayo T, Serck-Hanssen A (1980) Precancerous conditions and epithelial dysplasia in the stomach. J Clin Pathol 33:711–721PubMedCrossRefGoogle Scholar
  31. 31.
    Ming S-C, Bajtai A, Correa P, Elster K, Jarvi OH, Munoz N, Nagayo T, Stemmerman GN (1984) Gastric dysplasia: significance and pathologic criteria. Cancer 54:1794–1801PubMedCrossRefGoogle Scholar
  32. 32.
    Ito H, Hata J, Yokozaki H, Nakatani H, Oda N, Tahara E (1986) Tubular adenoma of the human stomach: an immunohistochemical analysis of gut hormones, serotonin, carcinoembryonic antigen, secretory component, and lysozyme. Cancer 58:2264–2272PubMedCrossRefGoogle Scholar
  33. 33.
    Oehlert W, Keller P, Henke M, Strauch M (1979) Gastric mucosal dysplasia: what is its clinical significance? Front Gastrointest Res 4:173–182PubMedGoogle Scholar
  34. 34.
    Kamiya T, Morishita T, Asakura H, Miura S, Munakata Y, Tsuchiya M (1982) Long-term followup study on gastric adenoma and its relation to gastric protruded carcinoma. Cancer 50:2496–2503PubMedCrossRefGoogle Scholar
  35. 35.
    Saraga E-P, Gardiol D, Costa J (1988) Gastric dysplasia: a histological follow-up study. Am J Surg Pathol 11:788–796CrossRefGoogle Scholar
  36. 36.
    Fujita S (1978) Biology of early gastric carcinoma. Pathol Res Pract 163:297–309PubMedCrossRefGoogle Scholar
  37. 37.
    Tokunaga M, Uemura Y, Tokudome T, Ishidate T, Masuda H, Okazaki E, Kaneko C, Naoe S, Ito M, Okamura A, Shimada A, Sato E, Land CE (1993) Epstein-Barr virus related gastric cancer in Japan: a molecular patho-epidemiological study. Acta Pathol Jpn 43:574–581PubMedGoogle Scholar
  38. 38.
    Takano Y, Kato Y, Sugano H (1994) Epstein-Barr virus-associated medullary carcinomas with lymphoid infiltration of the stomach. J Cancer Res Clin Oncol 120:303–308PubMedCrossRefGoogle Scholar
  39. 39.
    Nakamura S, Ueki T, Yao T, Ueyama T, Tsuneyoshi M (1994) Epstein-Barr virus in gastric carcinoma with lymphoid stroma. Cancer 73:2239–2249PubMedCrossRefGoogle Scholar
  40. 40.
    Ito H, Masuda H, Shimamoto F, Inokuchi C, Tahara E (1990) Gastric carcinoma with lymphoid stroma: pathological and immunohistochemical analysis. Hiroshima J Med Sci 39:29–37PubMedGoogle Scholar
  41. 41.
    Nakamura K, Ueyama T, Yao T, Xuan ZX, Ambe K, Adachi Y, Yakeishi Y, Matsukura A, Enjoji M (1992) Pathology and prognosis of gastric carcinoma: findings in 10000 patients who underwent primary gastrectomy. Cancer 70:1030–1037PubMedCrossRefGoogle Scholar
  42. 42.
    Stemmermann G, Heffelfinger SC, Noffsinger A, Hui YZ, Miller MA, Fenoglio-Preiser CM (1994) The molecular biology of esophageal and gastric cancer and their precursors: oncogenes, tumor suppressor genes, and growth factors. Hum Pathol 25:968–981PubMedCrossRefGoogle Scholar
  43. 43.
    Yokozaki H, Kuniyasu H, Kitadai Y, Nishimura K, Todo H, Ayhan A, Yasui W, Ito H, Tahara E (1992) p53 point mutations in primary human gastric carcinomas. J Cancer Res Clin Oncol 119:67–70PubMedCrossRefGoogle Scholar
  44. 44.
    Tamura G, Kihana T, Nomura K, Terada M, Sugimura T, Hirohashi S (1991) Detection of frequent p53 gene mutations in primary gastric cancer by cell sorting and polymerase chain reaction single-strand conformation polymorphism analysis. Cancer Res 51:3056–3058PubMedGoogle Scholar
  45. 45.
    Kim JH, Takahashi T, Chiba I, Park JG, Birrer MJ, Roh JK, Lee HD, Kim J-P, Minna JD, Gazdar AF (1991) Occurrence of p53 gene abnormalities in gastric carcinoma tumors and cell line. J Natl Cancer Inst 83:938–943PubMedCrossRefGoogle Scholar
  46. 46.
    Matozaki T, Sakamoto C, Matsuda K, Suzuki T, Konda Y, Nakano O, Wada K, Ucida T, Nishisaki H, Nagao M, Kasuga M (1993) Missense mutations and a deletion of the p53 gene in human gastric cancer. Biochem Biophys Res Commun 182:215–223CrossRefGoogle Scholar
  47. 47.
    Uchino S, Noguchi M, Ochiai A, Saito T, Kobayashi M, Hirohashi S (1993) p53 mutation in gastric cancer: a genetic mode for carcinogenesis is common to gastric and colorectal cancer. Int J Cancer 54:759–764PubMedCrossRefGoogle Scholar
  48. 48.
    Sano T, Tsujino T, Yoshida K, Nakayama H, Haruma K, Ito H, Nakamura Y, Kajiyama G, Tahara E (1991) Frequent loss of heterozygosity on chromosomes 1q, 5q, and 17p in human gastric carcinomas. Cancer Res 51:2926–2931PubMedGoogle Scholar
  49. 49.
    Yamada Y, Yoshida T, Hayashi K, Sekiya T, Yokota J, Hirohashi S, Nakatani K, Nakano H, Sugimura T, Terada M (1991) p53 gene mutations in gastric cancer metastases and in gastric cancer cell lines derived from metastases. Cancer Res 51:5800–5805PubMedGoogle Scholar
  50. 50.
    Uchino S, Tsuda H, Noguchi M, Yokota J, Terada M, Saito T, Kobayshi M, Sugimura T, Hirohashi S (1992) Frequent loss of heterozygosity at the DCC locus in gastric cancer. Cancer Res 52:3099–3102PubMedGoogle Scholar
  51. 51.
    Starzynska T, Bromly M, Ghosh A, Stern PL (1992) Prognostic significance of p53 overexpression in gastric and colorectal carcinoma. Br J Cancer 66:558–562PubMedCrossRefGoogle Scholar
  52. 52.
    Kakeji Y, Korenaga D, Tsujitani S, Baba H, Anai H, Maehara Y, Sugimachi K (1993) Gastric cancer with p53 overexpression in gastric and colorectal carcinoma. Br J Cancer 67:589–593PubMedCrossRefGoogle Scholar
  53. 53.
    Lowe SW, Schmitt EM, Smith SW, Osborne BA, Kacks T (1993) p53 is required for radiationinduced apoptosis in mouse thymocytes. Nature 362:847–849PubMedCrossRefGoogle Scholar
  54. 54.
    Lowe SW, Ruley HE, Jack T, Housman DE (1993) p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74:957–967PubMedCrossRefGoogle Scholar
  55. 55.
    Kikuchi-Yanoshita R, Konishi M, Ito S, Seki M, Tanaka K, Maeda Y, lino H, Fukuyama M, Koike M, Mori T (1992) Genetic changes of both p53 alleles associated with the conversion from colorectal adenoma to early carcinoma in familial adenomatous polyposis and non-familial adenomatous polyposis patients. Cancer Res 52:3965–3971PubMedGoogle Scholar
  56. 56.
    Esrig D, Spruck CHIII, Nichols PW, Chaiwun B, Steven K, Groshen S, Chen SC, Skinner DG, Jones PA, Cote RJ (1993) p53 nuclear protein accumulation correlates with mutations in the p53 gene, tumor grade, and stage in bladder cancer. Am J Pathol 143:1389–1397PubMedGoogle Scholar
  57. 57.
    Baas IO, Mulder J-WR, Offerhaus GJA, Vogelstein B, Hamilton S (1994) An evaluation of six antibodies for immunohistochemistry of mutant p53 gene product in archival colorectal neoplasms. J Pathol 172:5–12PubMedCrossRefGoogle Scholar
  58. 58.
    Tsuda H, Hirohashi S (1994) Association among p53 gene mutation, nuclear accumulation of the P53 protein and aggressive phenotypes in breast cancer. Int J Cancer 57:498–503PubMedCrossRefGoogle Scholar
  59. 59.
    Lane DP, Benchimol S (1990) p53: oncogene or antioncogene? Genes Dev 4:1–8PubMedCrossRefGoogle Scholar
  60. 60.
    Zhan Q, Lord KA, Alamo I Jr, Hollander MC, Carrier F, Ron D, Kohn KW, Hoffman B, Lieberman DA, Fornace AJ Jr (1994) The gadd and MyD genes define a novel set of mammalian genes encoding acidic protein that synergistically suppress cell growth. Mol Cell Biol 14:2361–2371PubMedCrossRefGoogle Scholar
  61. 61.
    Canman CE, Gilmer TM, Coutts SB, Kastan MB (1995) Growth factor modulation of p53-mediated growth arrest versus apoptosis. Genes Dev 9:600–611PubMedCrossRefGoogle Scholar
  62. 62.
    Lowe SW, Jacks T, Housman DE, Ruley HE (1994) Abrogation of oncogene-associated apoptosis allows transformation of p53-deficient cells. Proc Natl Acad Sci USA 91:2026–2030PubMedCrossRefGoogle Scholar
  63. 63.
    Lane DP (1992) p53, guardian of the genome. Nature 358:15–16PubMedCrossRefGoogle Scholar
  64. 64.
    Lowe SW, Bodia S, McClatchey A, Remington L, Ruley HE, Fisher DE, Housman DE, Jacks T (1994) p53 status and the efficacy of cancer therapy in vivo. Science 266:807–810PubMedCrossRefGoogle Scholar
  65. 65.
    Kobayashi M, Watanabe H, Ajioka Y, Yoshida M, Hitomi Y, Asakura H (1995) Correlation of p53 protein expression with apoptotic incidence in colorectal neoplasia. Virchows Arch 427:27–32PubMedCrossRefGoogle Scholar
  66. 66.
    Waldmann T, Kinzler KW, Vogelstein B (1995) p21 necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res 55:5187–5190Google Scholar
  67. 67.
    El-Deiry WS, Harper JW, O’Connor PM, Veolculescu VE, Canman CE, Jackman J, Pietenpol JA, Burrell M, Hill DE, Wang Y, Wiman KG, Mercer WE, Kastan MB, Kohn KW, Elledge SJ, Kinzler KW, Vogelstein B (1994) WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res 54:1169–1174PubMedGoogle Scholar
  68. 68.
    Steinman RA, Hoffman B, Iro A, Guillouf C, Lieberman DA, El-Houseini ME (1994) Induction of p21 (WAF1/CIP1) during differentiation. Oncogene 9:3389–3396PubMedGoogle Scholar
  69. 69.
    Michieli P, Chedid M, Lin D, Pierce JH, Mercer WE, Givol D (1994) Induction of WAF1/CIP1 by a p53-independent pathway. Cancer Res 54:3391–3395PubMedGoogle Scholar
  70. 70.
    Jiang H, Kin J, Su ZZ, Collart FR, Huberman E, Fisher PB (1994) Induction of differentiation in human promyelocytic HL-60 leukemia cells activates p21, WAF1/CIP1, expression in the absence of p53. Oncogene 9:3397–3406PubMedGoogle Scholar
  71. 71.
    Miyashita T, Krajewski S, Krajewska M, Wang HG, Lin HK, Libermann DA, Hoffman B, Reed JC (1994) Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 9:1799–1805PubMedGoogle Scholar
  72. 72.
    Ikeguchi M, Kaibara N, Horikawa H, Ito H (1995) Adriamycin induces apoptosis in human gastric cancer cell lines. Presented at the First International Gastric Cancer Congress, pp 1611–1616Google Scholar
  73. 73.
    Osaki M, Tatebe S, Goto A, Hayashi H, Oshimura M, Ito H (1997) 5-Fluorouracil (5-FU) induced apoptosis in gastric cancer cell lines; Role of the p53 gene. Apoptosis (in press)Google Scholar
  74. 74.
    Makino M, Shirai H, Sugamura K, Kimura O, Maeta M, Ito H, Kaibara N (1996) Increased induc tion of apoptosis of human colorectal cancer cells after preoperative treatment with 5-fluorouracil. Oncol Rep 3:281–285PubMedGoogle Scholar
  75. 75.
    Sugamura K, Makino M, Shirai H, Kimura O, Maeta M, Ito H, Kaibara N (1997) Increased induction of apoptosis of human gastric cancer cells after preoperative treatment with 5-fluorouracil. Cancer 79:12–17PubMedCrossRefGoogle Scholar
  76. 76.
    Yanagihara K, Tsumuraya M (1992) Transforming growth factor 1 induces apoptotic cell death in cultured human gastric carcinoma cells. Cancer Res 52:4042–4045PubMedGoogle Scholar
  77. 77.
    Yamamoto M, Maehara Y, Sakaguchi Y, Oda S, Kusumoto T, Ichiyoshi Y, Sugimachi K (1996) Transforming growth factor-β1 induces apoptosis in gastric cancer cells through a p53-independent pathway. Cancer 77(8 Suppl):1628–1633PubMedGoogle Scholar
  78. 78.
    Ito M, Yasui W, Kyo E, Yokozaki H, Nakayama H, Ito H, Tahara E (1992) Growth inhibition of transforming growth on human gastric carcinoma cells: receptor and postreceptor signaling. Cancer Res 52:295–300PubMedGoogle Scholar
  79. 79.
    Yonehara S, Ishii A, Yonehara M (1989) A cellkilling monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor. J Exp Med 169:1747–1756PubMedCrossRefGoogle Scholar
  80. 80.
    Owen-Schaub LB, Randinsky R, Kruzel E, Berry K, Yonehara S (1994) Anti-Fas on nonhematopoietic tumors: levels of Fas/Apo-1 and bcl-2 are not predictive of biological responsiveness. Cancer Res 54:1580–1586PubMedGoogle Scholar
  81. 81.
    Weis M, Schlegel J, Kass GEN, Holmstrom TH, Peters I, Eriksson J, Orrenius S, Chow SC (1995) Cellular events in FAS/APO-1-mediated apoptosis in JURKAT T lymphocytes. Exp Cell Res 219:699–708PubMedCrossRefGoogle Scholar
  82. 82.
    Itoh N, Tsujimoto Y, Nagata S (1993) Effect of bcl-2 on Fas antigen-mediated cell death. J Immunol 151:621–627PubMedGoogle Scholar
  83. 83.
    Vollmers HP, Dammrich J, Ribbert H, Wozniak E, Muller-Hermelink H-K (1995) Apoptosis of stomach carcinoma cells induced by a human monoclonal antibody. Cancer 76:550–558PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 1997

Authors and Affiliations

  • Hisao Ito
    • 1
  • Masato Ishida
    • 1
  • Satoshi Ohfuji
    • 1
  • Mitsuhiko Osaki
    • 1
  • Hisae Hayashi
    • 1
  • Shigeru Tatebe
    • 1
  1. 1.First Department of Pathology, Faculty of MedicineTottori UniversityYonago, Tottori 683Japan

Personalised recommendations