Molecular Bases of Human Stomach Carcinogenesis

  • Hiroshi Yokozaki
  • Hiroki Kuniyasu
  • Shuho Semba
  • Wataru Yasui
  • Eiichi Tahara


Multiple genetic alterations, including inactivation of tumor-suppressor genes, activation of oncogenes, and reactivation of telomerase, are implicated in human stomach carcinogenesis. Among them, replication errors (RERs) at microsatellite loci, reactivation of telomerase, activation of c-met, inactivation of p53, and deranged CD44 transcription are common events of both welldifferentiated and poorly differentiated gastric carcinomas. In addition to these common events, K-ras mutation, APC inactivation, loss of DCC, and amplification of c-erbB2 are preferentially found in well-differentiated gastric carcinomas, whereas gene mutations, loss of the cadherin/ catenin system, and amplification of K-sam are frequently observed in poorly differentiated cancers. In addition, a paracrine loop formed between cancer cells and stromal cells through the hepatocyte growth factor/c-met system plays an important role in morphogenesis and invasion of gastric carcinoma with different status of adhesion molecules and signal transduction systems in vivo. Reduction or loss of p27 protein, associated with overexpression of cyclin E, may confer the progression and metastasis. In regard to precancerous lesions of the stomach, some of the intestinal metaplasias and adenomas exhibited the same genetic alterations (e.g. mutations of APC and p53, RERs, and reactivation of telomerase) and telomere shortening as those found in well-differentiated carcinomas. Moreover, human telomerase RNA overexpression, which correlates well with the number of Helicobacter pylori present, may precede telomerase reactivation in human stomach carcinogenesis. These observations suggest overall that there are two distinct genetic pathways in human stomach carcinogenesis, and some well-differentiated cancers share the same multistep genetic alterations as those established for colorectal cancers.


Gastric Cancer Gastric Carcinoma Adenomatous Polyposis Coli Intestinal Metaplasia Gastric Cancer Cell Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61:759–767CrossRefPubMedGoogle Scholar
  2. 2.
    Tahara E, Semba S, Tahara H (1996) Molecular biological observations in gastric cancer. Semin Oncol 23:307–315PubMedGoogle Scholar
  3. 3.
    Han HJ, Yanagisawa A, Kato Y, Park JG, Nakamura Y (1993) Genetic instability in pancreatic cancer and poorly differentiated type of gastric cancer. Cancer Res 53:5087–5089PubMedGoogle Scholar
  4. 4.
    Rhyu MG, Park WS, Meltzer SJ (1994) Microsatellite instability occurs frequently in human gastric carcinoma. Oncogene 9:29–32PubMedGoogle Scholar
  5. 5.
    Strickler JG, Zheng J, Shu Q, Burgart LJ, Alberts SR, Shibata D (1994) p53 mutations and microsatellite instability in sporadic gastric cancer: when guardians fail. Cancer Res 54:4750–1755PubMedGoogle Scholar
  6. 6.
    Chong JM, Fukayama M, Hayashi Y, Takizawa T, Koike M, Konishi M, Kikuchi Yanoshita R, Miyaki M (1994) Microsatellite instability in the progression of gastric carcinoma. Cancer Res 54:4595–4597PubMedGoogle Scholar
  7. 7.
    Semba S, Yokozaki H, Yamamoto S, Yasui W, Tahara E (1996) Microsatellite instability in precancerous lesions and adenocarcinomas of the stomach. Cancer 77:1620–1627PubMedGoogle Scholar
  8. 8.
    Seruca R, Santos NR, David L, Constancia M, Barroca H, Carneiro F, Seixas M, Peltomaki P, Lothe R, Sobrinho Simoes M (1995) Sporadic gastric carcinomas with microsatellite instability display a particular clinicopathologic profile. Int J Cancer 64:32–36CrossRefPubMedGoogle Scholar
  9. 9.
    Horii A, Han HJ, Shimada M, Yanagisawa A, Kato Y, Ohta H, Yasui W, Tahara E, Nakamura Y (1994) Frequent replication errors at microsatellite loci in tumors of patients with multiple primary cancers. Cancer Res 54:3373–3375PubMedGoogle Scholar
  10. 10.
    Counter CM, Avilion AA, LeFeuvre CE, Stewart NG, Greider CW, Harley CB, Bacchetti S (1992) Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J 11:1921–1929PubMedGoogle Scholar
  11. 11.
    Hastie ND, Dempster M, Dunlop MG, Thompson AM, Green DK, Allshire RC (1990) Telomere reduction in human colorectal carcinoma and with ageing. Nature 346:866–868CrossRefPubMedGoogle Scholar
  12. 12.
    Tahara E, Kuniyasu H, Yasui W, Yokozaki H (1994) Gene alterations in intestinal metaplasia and gastric cancer. Eur J Gastroenterol Hepatol 6(suppl 1):S97-S101PubMedGoogle Scholar
  13. 13.
    Tahara H, Kuniyasu H, Yokozaki H, Yasui W, Shay JW, Ide T, Tahara E (1995) Telomerase activity in preneoplastic and neoplastic gastric and colorectal lesions. Clin Cancer Res 1:1245–1251PubMedGoogle Scholar
  14. 14.
    Hiyama E, Yokoyama T, Tatsumoto N, Hiyama K, Imamura Y, Murakami Y, Kodama T, Piatyszek MA, Shay JW, Matsuura Y (1995) Telomerase activity in gastric cancer. Cancer Res 55:3258–3262PubMedGoogle Scholar
  15. 15.
    Feng J, Funk WD, Wang SS, Weinrich SL, Avilion AA, Chiu CP, Adams RR, Chang E, Allsopp RC, Yu J, Le S, West MD, Harley CB, Andrews WH, Greider CW, Villeponteau B (1995) The RNA component of human telomerase. Science 269:1236–1241CrossRefPubMedGoogle Scholar
  16. 16.
    Avilion AA, Piatyszek MA, Gupta J, Shay JW, Bacchetti S, Greider CW (1996) Human telomerase RNA and telomerase activity in immortal cell lines and tumor tissues. Cancer Res 56:645–650PubMedGoogle Scholar
  17. 17.
    Blasco MA, Rizen M, Greider CW, Hanahan D (1996) Differential regulation of telomerase activity and telomerase RNA during multi-stage tumorigensis. Nat Genet 12:200–204CrossRefPubMedGoogle Scholar
  18. 18.
    Kuniyasu H, Domen T, Hamamoto T, Yokozaki H, Yasui W, Tahara H, Tahara E (1997) Expression of human telomerase RNA is an early event of stomach carcinogenesis. Jpn J Cancer Res 88:103–107CrossRefPubMedGoogle Scholar
  19. 19.
    Sano T, Tsujino T, Yoshida K, Nakayama H, Haruma K, Ito H, Nakamura Y, Kajiyama G, Tahara E (1991) Frequent loss of heterozygosity on chromosomes lq, 5q, and 17p in human gastric carcinomas. Cancer Res 51:2926–2931PubMedGoogle Scholar
  20. 20.
    Yokozaki H, Kuniyasu H, Kitadai Y, Nishimura K, Todo H, Ayhan A, Yasui W, Ito H, Tahara E (1992) p53 point mutations in primary human gastric carcinomas. J Cancer Res Clin Oncol 119:67–70CrossRefGoogle Scholar
  21. 21.
    Tamura G, Kihana T, Nomura K, Terada M, Sugimura T, Hirohashi S (1991) Detection of frequent p53 gene mutations in primary gastric cancer by cell sorting and polymerase chain reaction single-strand conformation polymorphism analysis. Cancer Res 51:3056–3058PubMedGoogle Scholar
  22. 22.
    Mattar R, Yokozaki H, Yasui W, Ito H, Tahara E (1992) p53 gene mutations in gastric cancer cell lines. Oncology (Life Sci Adv) 11:7–12Google Scholar
  23. 23.
    Tohdo H, Yokozaki H, Haruma K, Kajiyama G, Tahara E (1993) p53 gene mutations in gastric adenomas. Virchows Arch B Cell Pathol 63:191–195CrossRefGoogle Scholar
  24. 24.
    Sakurai S, Sano T, Nakajima T (1995) Clinicopathological and molecular biological studies of gastric adenomas with special reference to p53 abnormality. Pathol Int 45:51–57CrossRefPubMedGoogle Scholar
  25. 25.
    Ochiai A, Yamauchi Y, Hirohashi S (1996) p53 mutations in the non-neoplastic mucosa of the human stomach showing intestinal metaplasia. Int J Cancer 69:28–33CrossRefPubMedGoogle Scholar
  26. 26.
    Maesawa C, Tamura G, Suzuki Y, Ogasawara S, Sakata K, Kashiwaba M, Satodate R (1995) The sequential accumulation of genetic alterations characteristic of the colorectal adenomacarcinoma sequence does not occur between gastric adenoma and adenocarcinoma. J Pathol 176:249–258CrossRefPubMedGoogle Scholar
  27. 27.
    Harris CC (1991) Chemical and physical carcinogenesis: advances and perspectives for the 1990s. Cancer Res 51:5023s-5044sPubMedGoogle Scholar
  28. 28.
    Uchino S, Noguchi M, Ochiai A, Saito T, Kobayashi M, Hirohashi S (1993) p53 mutation in gastric cancer: a genetic model for carcinogenesis is common to gastric and colorectal cancer. Int J Cancer 54:759–764CrossRefPubMedGoogle Scholar
  29. 29.
    Poremba C, Yandell DW, Huang Q, Little JB, Mellin W, Schmid KW, Bocker W, Dockhorn Dworniczak B (1995) Frequency and spectrum of p.53 mutations in gastric cancer—a molecular genetic and immunohistochemical study. Virchows Arch 426:447–455CrossRefPubMedGoogle Scholar
  30. 30.
    Sugimura T, Fujimura S, Baba T (1970) Tumor production in the glandular stomach and alimentary tract of the rat by N-methyl-N’-nitro-N-nitrosoguanidine. Cancer Res 30:455–465PubMedGoogle Scholar
  31. 31.
    Mirvish S (1971) Kinetics of nitrosamine formation from alkylureas, N-alkylurethanes, and alkylguanidines: possible implications for the etiology of human gastric cancer. J Natl Cancer Inst 46:1183–1193PubMedGoogle Scholar
  32. 32.
    Correa P (1991) The new era of cancer epidemiology. Cancer Epidemiol Biomarkers Prey 1:5–11Google Scholar
  33. 33.
    Hollstein MC, Metcalf RA, Welsh JA, Montesano R, Harris CC (1990) Frequent mutation of the p53 gene in human esophageal cancer. Proc Natl Acad Sci USA 87:9958–9961CrossRefPubMedGoogle Scholar
  34. 34.
    Nishisho I, Nakamura Y, Miyoshi Y, Miki Y, Ando H, Horii A, Koyama K, Utsunomiya J, Baba S, Hedge P (1991) Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science 253:665–669CrossRefPubMedGoogle Scholar
  35. 35.
    Kinzler KW, Nilbert MC, Su LK, Vogelstein B, Bryan TM, Levy DB, Smith KJ, Preisinger AC, Hedge P, McKechnie D, Finniear R, Markham A, Groffen J, Boguski MS, Altschul SF, Horii A, Ando H, Miyoshi Y, Miki Y, Nishisho I, Nakamura Y (1991) Identification of FAP locus genes from chromosome 5q21. Science 253:661–665CrossRefPubMedGoogle Scholar
  36. 36.
    Nakatsuru S, Yanagisawa A, Ichii S, Tahara E, Kato Y, Nakamura Y, Horii A (1992) Somatic mutation of the APC gene in gastric cancer: frequent mutations in very well differentiated adenocarcinoma and signet-ring cell carcinoma. Hum Mol Genet 1:559–563CrossRefPubMedGoogle Scholar
  37. 37.
    Nishimura K, Yokozaki H, Haruma K, Kajiyama G, Tahara E (1995) Alterations of the APC gene in carcinoma cell lines and precancerous lesions of the stomach. Int J Oncol 7:587–592PubMedGoogle Scholar
  38. 38.
    Nakatsuru S, Yanagisawa A, Furukawa Y, Ichii S, Kato Y, Nakamura Y, Horii A (1993) Somatic mutations of the APC gene in precancerous lesion of the stomach. Hum Mol Genet 2:1463–1465CrossRefPubMedGoogle Scholar
  39. 39.
    Tamura G, Maesawa C, Suzuki Y, Tamada H, Satoh M, Ogasawara S, Kashiwaba M, Satodate R (1994) Mutations of the APC gene occur during early stages of gastric adenoma development. Cancer Res 54:1149–1151PubMedGoogle Scholar
  40. 40.
    Fearon ER, Cho KR, Nigro JM, Kern SE, Simons JW, Ruppert JM, Hamilton SR, Preisinger AC, Thomas G, Kinzler KW, Vogelstein B (1990) Identification of a chromosome 18q gene that is altered in colorectal cancers. Science 247:49–56CrossRefPubMedGoogle Scholar
  41. 41.
    Uchino S, Tsuda H, Noguchi M, Yokota J, Terada M, Saito T, Kobayashi M, Sugimura T, Hirohashi S (1992) Frequent loss of heterozygosity at the DCC locus in gastric cancer. Cancer Res 52:3099–3102PubMedGoogle Scholar
  42. 42.
    Ezaki T, Yanagisawa A, Ohta K, Aiso S, Watanabe M, Hibi T, Kato Y, Nakajima T, Ariyama T, Inazawa J, Nakamura Y, Horii A (1996) Deletion mapping on chromosome 1p in well-differentiated gastric cancer. Br J Cancer 73:424–428CrossRefPubMedGoogle Scholar
  43. 43.
    Tamura G, Ogasawara S, Nishizuka S, Sakata K, Maesawa C, Suzuki Y, Terashima M, Saito K, Satodate R (1996) Two distinct regions of deletion on the long arm of chromosome 5 in differentiated adenocarcinomas of the stomach. Cancer Res 56:612–615PubMedGoogle Scholar
  44. 44.
    Ayhan A, Yasui W, Yokozaki H, Seto M, Ueda R, Tahara E (1994) Loss of heterozygosity at the bcl2 gene locus and expression of bcl-2 in human gastric and colorectal carcinomas. Jpn J Cancer Res 85:584–591CrossRefPubMedGoogle Scholar
  45. 45.
    Kuniyasu H, Yasui W, Yokozaki H, Akagi M, Akama Y, Kitahara K, Fujii K, Tahara E (1994) Frequent loss of heterozygosity of the long arm of chromosome 7 is closely associated with progression of human gastric carcinomas. Int J Cancer 59:597–600CrossRefPubMedGoogle Scholar
  46. 46.
    Ochiai A, Akimoto S, Shimoyama Y, Nagafuchi A, Tsukita S, Hirohashi S (1994) Frequent loss of alpha catenin expression in scirrhous carcinomas with scattered cell growth. Jpn J Cancer Res 85:266–273CrossRefPubMedGoogle Scholar
  47. 47.
    Yasui W, Kuniyasu H, Akama Y, Kitahara K, Nagafuchi A, Tsukita S, Tahara E (1995) Expression of E-cadherin, alpha- and beta-catenins in human gastric carcinomas: correlation with histology and tumor progression. Oncol Rep 2:111–117PubMedGoogle Scholar
  48. 48.
    Shimoyama Y, Nagafuchi A, Fujita S, Gotoh M, Takeichi M, Tsukita S, Hirohashi S (1992) Cadherin dysfunction in a human cancer cell line: possible involvement of loss of alpha-catenin expression in reduced cell-cell adhesiveness. Cancer Res 52:5770–5774PubMedGoogle Scholar
  49. 49.
    Becker KF, Atkinson MJ, Reich U, Becker I, Nekarda H, Siewert JR, Hofler H (1994) ECadherin gene mutations provide clues to diffuse type gastric carcinomas. Cancer Res 54:3845–3852PubMedGoogle Scholar
  50. 50.
    Keyomarsi K, Pardee AB (1993) Redundant cyclin overexpression and gene amplification in breast cancer. Proc Natl Acad Sci USA 90:1112–1116CrossRefPubMedGoogle Scholar
  51. 51.
    Keyomarsi K, O’Leary N, Molnar G, Lees E, Fingert HJ, Pardee AB (1994) Cyclin E, a potential prognostic marker for breast cancer. Cancer Res 54:380–385PubMedGoogle Scholar
  52. 52.
    Akama Y, Yasui W, Yokozaki H, Kuniyasu H, Kitahara K, Ishikawa T, Tahara E (1995) Frequent amplification of the cyclin E gene in human gastric carcinomas. Jpn J Cancer Res 86:617–621CrossRefPubMedGoogle Scholar
  53. 53.
    Kitahara K, Yasui W, Kuniyasu H, Yokozaki H, Akama Y, Yunotani S, Hisatsugu T, Tahara E (1995) Concurrent amplification of cyclin E and CDK2 genes in colorectal carcinomas. Int J Cancer 62:25–28CrossRefPubMedGoogle Scholar
  54. 54.
    Yasui W, Akama Y, Kuniyasu H, Yokozaki H, Semba S, Shimamoto F, Tahara E (1996) Expression of cyclin E in human gastric adenomas and adenocarcinomas: correlation with proliferative activity and p53 status. J Exp Ther Oncol 1:88–94PubMedGoogle Scholar
  55. 55.
    Tsuda T, Nakatani H, Matsumura T, Yoshida K, Tahara E, Nishihira T, Sakamoto H, Yoshida T, Terada M, Sugimura T (1988) Amplification of the hst-1 gene in human esophageal carcinomas. Jpn J Cancer Res 79:584–588CrossRefPubMedGoogle Scholar
  56. 56.
    Yoshida K, Kawami H, Kuniyasu H, Nishiyama M, Yasui W, Hirai T, Toge T, Tahara E (1994) Coamplification of cyclin D, hst-1 and int-2 genes is a good biological marker of high malignancy for human esophageal carcinomas. Oncol Rep 1:493–496PubMedGoogle Scholar
  57. 57.
    Noda A, Ning Y, Venable SF, Percira-Smith OM, Smith JR (1994) Cloning of senescent cell derived inhibitors of DNA synthesis using an expression screen. Exp Cell Res 11:90–98CrossRefGoogle Scholar
  58. 58.
    El Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825CrossRefPubMedGoogle Scholar
  59. 59.
    Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ (1993) The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75:805–816CrossRefPubMedGoogle Scholar
  60. 60.
    Toyoshima H, Hunter T (1994) p27, novel inhibitor of G1 cdk protein kinase activity, is related to p21. Cell 78:67–74CrossRefPubMedGoogle Scholar
  61. 61.
    Hengst L, Dulic V, Slingerland JM, Lees E, Reed SI (1994) A cell cycle-regulated inhibitor of cyclindependent kinases. Proc Natl Acad Sci USA 91:5291–5295CrossRefPubMedGoogle Scholar
  62. 62.
    Serrano M, Hannon GJ, Beach D (1993) A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 366:704–707CrossRefPubMedGoogle Scholar
  63. 63.
    Hammon GJ, Beach D (1994) p15INK4B is a potential effector of TGF-β induced cell cycle arrest. Nature 371:257–261CrossRefGoogle Scholar
  64. 64.
    Sakata K, Tamura G, Maesawa C, Suzuki Y, Terashima M, Satoh K, Eda Y, Suzuki A, Sekiyama S, Satodate R (1995) Loss of heterozygosity on the short arm of chromosome 9 without p16 gene mutation in gastric carcinomas. Jpn J Cancer Res 86:333–335CrossRefPubMedGoogle Scholar
  65. 65.
    Akama Y, Yasui W, Kuniyasu H, Yokozaki H, Akagi M, Tahara H, Ishikawa T, Tahara E (1996) Genetic status and expression of the cyclindependent kinase inhibitors in human gastric carcinoma cell lines. Jpn J Cancer Res 87:824–830CrossRefPubMedGoogle Scholar
  66. 66.
    Kitahara K, Yasui W, Yokozaki H, Semba S, Hamamoto T, Hisatsugu T, Tahara E (1996) Expression of cyclin D1, CDK4 and p27 KIP1 is associated with the p16 MTS 1 gene status in human esophageal carcinoma cell lines. J Exp Ther Oncol 1:7–12PubMedGoogle Scholar
  67. 67.
    Merlo A, Herman JG, Mao L, Lee DJ, Gabrielson E, Burger PC, Baylin SB, Sidransky D (1995) 5’CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/ CDKN2IMTS1 in human cancers. Nat Med 1:686–692CrossRefPubMedGoogle Scholar
  68. 67a.
    Yasui W, Yokozaki H, Kuniyasu F, Shimamoto R, Tahara E (1996) Expression of CDK inhibitor p16 in human gastric carcinomas. In: Tahara E, Sugimachi K, Oohara T (eds) Recent advances in gastroenterological carcinogenesis I. Monduzzi Editore, Bologna, pp 765–769Google Scholar
  69. 68.
    Tahara H, Sato E, Noda A, Ide T (1995) Increase in expression level of p21s d il /cip1/waf1 with increasing division age in both normal and SV40-transformed human fibroblasts. Oncogene 10: 835–840PubMedGoogle Scholar
  70. 69.
    Parker SB, Eichele G, Zhang P, Rawls A, Sands AT, Bradley A, Olson EN, Harper JW, Elledge SJ (1995) p53-Independent expression of p21cip1 muscle and other terminally differentiating cells. Science 267:1024–1027CrossRefPubMedGoogle Scholar
  71. 70.
    Akagi M, Yasui W, Akama Y, Yokozaki H, Tahara H, Haruma K, Kajiyama G, Tahara E (1996) Inhibition of cell growth by transforming growth factor β1 is associated with p53-independ-ent induction of p21 in gastric carcinoma cells. Jpn J Cancer Res 87:377–384CrossRefPubMedGoogle Scholar
  72. 71.
    Yasui W, Akama Y, Kuniyasu H, Semba S, Shimamoto F, Tahara E (1996) Expression of cyclin-dependent kinase inhibitor p21AF1/CIP1 in non-neoplastic mucosa and neoplasia of the stomach: relation with p.53 status and proliferative activity. J Pathol 180:122–128CrossRefPubMedGoogle Scholar
  73. 71a.
    Yasui W, Kudo Y, Semba S, Yokozaki H, Tahara E (1997) Reduced expression of cyclin-dependent kinase inhibitor p27KIP1 is associated with advanced stage and invasiveness of gastric carcinomas. Jpn J Canser Res (in press)Google Scholar
  74. 72.
    Yanagihara K, Tsumuraya M (1992) Transforming growth factor beta 1 induces apoptotic cell death in cultured human gastric carcinoma cells. Cancer Res 52:4042–4045PubMedGoogle Scholar
  75. 73.
    Tahara H, Kamada K, Sato E, Tsuyama N, Kim JK, Hara E, Oda K, Ide T (1995) Increase in expression levels of interferon-inducible genes in senescent human diploid fibroblasts and in SV40transformed human fibroblasts with extended lifespan. Oncogene 11:1125–1132PubMedGoogle Scholar
  76. 74.
    Kasagi N, Gomyo Y, Shirai H, Tsujitani S, Ito H (1994) Apoptotic cell death in human gastric carcinoma: analysis by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling. Jpn J Cancer Res 85:939–945CrossRefPubMedGoogle Scholar
  77. 75.
    Miyashita T, Reed JC (1995) Tumor suppressor p.53 is a direct transcriptional activator of the human bax gene. Cell 80:293–299CrossRefPubMedGoogle Scholar
  78. 76.
    Park M, Dean M, Kaul K, Braun MJ, Gonda MA, Vande Woude G (1987) Sequence of MET protooncogene cDNA has features characteristic of the tyrosine kinase family of growth-factor receptors. Proc Natl Acad Sci USA 84:6379–6383CrossRefPubMedGoogle Scholar
  79. 77.
    Bottaro DP, Rubin JS, Faletto DL, Chan AM, Kmiecik TE, Vande Woude GF, Aaronson SA (1991) Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science 251:802–804CrossRefPubMedGoogle Scholar
  80. 78.
    Kuniyasu H, Yasui W, Kitadai Y, Yokozaki H, Ito H, Tahara E (1992) Frequent amplification of the c-met gene in scirrhous type stomach cancer. Biochem Biophys Res Commun 189:227–232CrossRefPubMedGoogle Scholar
  81. 79.
    Kuniyasu H, Yasui W, Yokozaki H, Kitadai Y, Tahara E (1993) Aberrant expression of c-met mRNA in human gastric carcinomas. Int J Cancer 55:72–75CrossRefPubMedGoogle Scholar
  82. 80.
    Rodrigues GA, Naujokas MA, Park M (1991) Alternative splicing generates isoforms of the met receptor tyrosine kinase which undergo differential processing. Mol Cell Biol 11:2962–2970PubMedGoogle Scholar
  83. 81.
    Rodrigues GA, Park M (1993) Isoforms of the met receptor tyrosine kinase. EXS 65:167–179PubMedGoogle Scholar
  84. 82.
    Yokozaki H, Semba S, Yamamoto S, Tahara E (1996) A splice variant of the c-met protooncogene is the predominant population ex-pressed in human gastric mucosa and carcinoma. Oncol Rep 3:425–428PubMedGoogle Scholar
  85. 83.
    Yokozaki H, Ito M, Yasui W, Kyo E, Kuniyasu H, Kitadai Y, Tsubouchi H, Daikuhara Y, Tahara E (1993) Biologic effect of human hepatocyte growth factor on human gastric carcinoma cell lines. Int J Oncol 3:89–93CrossRefPubMedGoogle Scholar
  86. 84.
    Tannapfel A, Wittekind C, Tahara E (1994) Effect of hepatocyte growth factor (HGF)/scatter factor (SF) on cell adhesion in gastric cancer. Z Gastroenterol 32:91–93PubMedGoogle Scholar
  87. 85.
    Ochiai A, Akimoto S, Kanai Y, Shibata T, Oyama T, Hirohashi S (1994) c-erbB-2 gene product associates with catenins in human cancer cells. Biochem Biophys Res Commun 205:73–78CrossRefPubMedGoogle Scholar
  88. 86.
    Nakatani H, Tahara E, Sakamoto H, Terada M, Sugimura T (1985) Amplified DNA sequences in cancers. Biochem Biophys Res Commun 130:508–514CrossRefPubMedGoogle Scholar
  89. 87.
    Nakatani H, Tahara E, Yoshida T, Sakamoto H, Suzuki T, Watanabe H, Sekiguchi M, Kaneko Y, Sakurai M, Terada M, Sugimura T (1986) Detection of amplified DNA sequences in gastric cancers by a DNA renaturation method in gel. Jpn J Cancer Res 77:849–853PubMedGoogle Scholar
  90. 88.
    Nakatani H, Sakamoto H, Yoshida T, Yokota J, Tahara E, Sugimura T, Terada M (1990) Isolation of an amplified DNA sequence in stomach cancer. Jpn J Cancer Res 81:707–710CrossRefPubMedGoogle Scholar
  91. 89.
    Katoh M, Hattori Y, Sasaki H, Tanaka M, Sugano K, Yazaki Y, Sugimura T, Terada M (1992) K-sam gene encodes secreted as well as transmembrane receptor tyrosine kinase. Proc Natl Acad Sci USA 89:2960–2964CrossRefPubMedGoogle Scholar
  92. 90.
    Hattori Y, Odagiri H, Nakatani H, Miyagawa K, Naito K, Sakamoto H, Katoh O, Yoshida T, Sugimura T, Terada M (1990) K-sam, an amplified gene in stomach cancer, is a member of the heparin-binding growth factor receptor genes. Proc Natl Acad Sci USA 87:5983–5987CrossRefPubMedGoogle Scholar
  93. 91.
    Yokota J, Yamamoto T, Miyajima N, Toyoshima K, Nomura N, Sakamoto H, Yoshida T, Terada M, Sugimura T (1988) Genetic alterations of the c-erbB-2 oncogene occur frequently in tubular adenocarcinoma of the stomach and are often accompanied by amplification of the v-erbA homologue. Oncogene 2:283–287PubMedGoogle Scholar
  94. 92.
    Kameda T, Yasui W, Yoshida K, Tsujino T, Nakayama H, Ito M, Ito H, Tahara E (1990) Expression of ERBB2 in human gastric carcinomas: relationship between p185ERBB2 expression and the gene amplification. Cancer Res 50:8002–8009PubMedGoogle Scholar
  95. 93.
    Yonemura Y, Ninomiya I, Ohoyama S, Kimura H, Yamaguchi A, Fushida S, Kosaka T, Miwa K, Miyazaki I, Endou Y, Tanaka M, Sasaki T (1991) Expression of c-erbB-2 oncoprotein in gastric carcinoma: immunoreactivity for c-erbB-2 protein is an independent indicator of poor short-term prognosis is patients with gastric carcinoma. Cancer 67:2914–2918CrossRefPubMedGoogle Scholar
  96. 94.
    Oda N, Tsujino T, Tsuda T, Yoshida K, Nakayama H, Yasui W, Tahara E (1990) DNA ploidy pattern and amplification of ERBB and ERBB2 genes in human gastric carcinomas. Virchows Arch B Cell Pathol 58:273–277Google Scholar
  97. 95.
    Tsujino T, Yoshida K, Nakayama H, Ito H, Shimosato T, Tahara E (1990) Alterations of oncogenes in metastatic tumours of human gastric carcinomas. Br J Cancer 62:226–230CrossRefPubMedGoogle Scholar
  98. 96.
    Yoshida K, Tsuda T, Matsumura T, Tsujino T, Hattori T, Ito H, Tahara E (1989) Amplification of epidermal growth factor receptor (EGFR) gene and oncogenes in human gastric carcinomas. Virchows Arch B Cell Pathol 57:285–290CrossRefGoogle Scholar
  99. 97.
    Tahara E (1993) Molecular mechanism of stomach carcinogenesis. J Cancer Res Clin Oncol 119:265–272 (editorial)CrossRefPubMedGoogle Scholar
  100. 98.
    Yoshida MC, Wada M, Satoh H, Yoshida T, Sakamoto H, Miyagawa K, Yokota J, Koda T, Kakinuma M, Sugimura T, Terada M (1988) Human hst-1 (HSTF-1) gene maps to chromosome band 11q13 and coamplifies with the int-2 gene in human cancer. Proc Natl Acad Sci USA 85:4861–4864CrossRefPubMedGoogle Scholar
  101. 99.
    Yamamoto T, Hattori T, Tahara E (1988) Interaction between transforming growth factoralpha and c-Ha-ras p21 in progression of human gastric carcinoma. Pathol Res Pract 183:663–669CrossRefPubMedGoogle Scholar
  102. 100.
    Yoshida K, Kyo E, Tsuda T, Tsujino T, Ito M, Niimoto M, Tahara E (1990) EGF and TGF-alpha, the ligands of hyperproduced EGFR in human esophageal carcinoma cells, act as autocrine growth factors. Int J Cancer 45:131–135CrossRefPubMedGoogle Scholar
  103. 101.
    Tahara E, Sumiyoshi H, Hata J, Yasui W, Taniyama K, Hayashi T, Nagae S, Sakamoto S (1986) Human epidermal growth factor in gastric carcinoma as a biologic marker of high malignancy. Jpn J Cancer Res 77:145–152PubMedGoogle Scholar
  104. 102.
    Kitadai Y, Yasui W, Yokozaki H, Kuniyasu H, Ayhan A, Haruma K, Kajiyama G, Johnson GR, Tahara E (1993) Expression of amphiregulin, a novel gene of the epidermal growth factor family, in human gastric carcinomas. Jpn J Cancer Res 84:879–884CrossRefPubMedGoogle Scholar
  105. 103.
    Akagi M, Yokozaki H, Kitadai Y, Ito R, Yasui W, Haruma K, Kajiyama G, Tahara E (1995) Expression of amphiregulin in human gastric cancer cell lines. Cancer 75:1460–1466PubMedGoogle Scholar
  106. 104.
    Kuniyasu H, Yoshida K, Yokozaki H, Yasui W, Ito H, Toge T, Ciardiello F, Persico MG, Saeki T, Salomon DS, Tahara E (1991) Expression of cripto, a novel gene of the epidermal growth factor family, in human gastrointestinal carcinomas. Jpn J Cancer Res 82:969–973CrossRefPubMedGoogle Scholar
  107. 105.
    Kuniyasu H, Yasui W, Akama Y, Akagi M, Tohdo H, Ji Z-Q, Kitadai Y, Yokozaki H, Tahara E (1994) Expression of cripto in human gastric carcinomas: an association with tumor stage and prognosis. J Exp Clin Cancer Res 13:151–157Google Scholar
  108. 106.
    Yoshida K, Yokozaki H, Niimoto M, Ito H, Ito M, Tahara E (1989) Expression of TGF-beta and procollagen type I and type III in human gastric carcinomas. Int J Cancer 44:394–398CrossRefPubMedGoogle Scholar
  109. 107.
    Tsuda T, Yoshida K, Tsujino T, Nakayama H, Kajiyama G, Tahara E (1989) Coexpression of platelet-derived growth factor (PDGF) A-chain and PDGF receptor genes in human gastric carcinomas. Jpn J Cancer Res 80:813–817CrossRefPubMedGoogle Scholar
  110. 108.
    Tahara E, Kuniyasu H, Yasui W, Yokozaki H (1994) Abnormal expression of growth factors and their receptors in stomach cancer. In: Nishi M, Ichikawa H, Nakajima T, Maruyama K, Tahara E (eds) Gastric cancer. Springer, Tokyo, pp 163–173Google Scholar
  111. 109.
    Tanimoto H, Yoshida K, Yokozaki H, Yasui W, Nakayama H, Ito H, Ohama K, Tahara E (1991) Expression of basic fibroblast growth factor in human gastric carcinomas. Virchows Arch B Cell Pathol 61:263–267Google Scholar
  112. 110.
    Ito R, Kitadai Y, Kyo E, Yokozaki H, Yasui W, Yamashita U, Nikai H, Tahara E (1993) Interleukin 1 alpha acts as an autocrine growth stimulator for human gastric carcinoma cells. Cancer Res 53:4102–4106PubMedGoogle Scholar
  113. 110a.
    Kitadai Y, Haruma K, Yamamoto S, Ue T, Omoto Y, Fridler IJ, Tahara E, Kajiyama G (1997) Inter leukin 8 (IL-8) acts as an angiogenic factor in human gastric carcinomas. Proceedings of the 88th Annual Meeting of the American Association for Cancer Research 38:53Google Scholar
  114. 111.
    Yoshida K, Yasui W, Ito H, Tahara E (1990) Growth factors in progression of human esophageal and gastric carcinomas. Exp Pathol 40:291–300CrossRefPubMedGoogle Scholar
  115. 112.
    Kitadai Y, Yasui W, Yokozaki H, Kuniyasu H, Haruma K, Kajiyama G, Tahara E (1992) The level of a transcription factor Spl is correlated with the expression of EGF receptor in human gastric carcinomas. Biochem Biophys Res Commun 189:1342–1348CrossRefPubMedGoogle Scholar
  116. 113.
    Kitadai Y, Yamazaki H, Yasui W, Kyo E, Yokozaki H, Kajiyama G, Johnson AC, Pastan I, Tahara E (1993) GC factor represses transcription of several growth factor/receptor genes and causes growth inhibition of human gastric carcinoma cell lines. Cell Growth Differ 4:291–296PubMedGoogle Scholar
  117. 114.
    Ito M, Yasui W, Kyo E, Yokozaki H, Nakayama H, Ito H, Tahara E (1992) Growth inhibition of transforming growth factor beta on human gastric carcinoma cells: receptor and postreceptor signaling. Cancer Res 52:295–300PubMedGoogle Scholar
  118. 115.
    Ito M, Yasui W, Nakayama H, Yokozaki H, Ito H, Tahara E (1992) Reduced levels of transforming growth factor-beta type I receptor in human gas-tric carcinomas. Jpn J Cancer Res 83:86–92CrossRefPubMedGoogle Scholar
  119. 116.
    Park K, Kim SJ, Bang YJ, Park JG, Kim NK, Roberts AB, Sporn MB (1994) Genetic changes in the transforming growth factor beta (TGF-beta) type II receptor gene in human gastric cancer cells: correlation with sensitivity to growth inhibition by TGF-beta. Proc Natl Acad Sci USA 91:8772–8776CrossRefPubMedGoogle Scholar
  120. 117.
    Myeroff LL, Parsons R, Kim SJ, Hedrick L, Cho KR, Orth K, Mathis M, Kinzler KW, Lutterbaugh J, Park K, Bang Y-J, Lee H, Park J-G, Lynch HT, Roberts AB, Vogelstein B, Markowitz SD (1995) A transforming growth factor beta receptor type II gene mutation common in colon and gastric but rare in endometrial cancers with microsatellite instability. Cancer Res 55:5545–5547Google Scholar
  121. 118.
    Stamenkovic I, Aruffo A, Amiot M, Seed B (1991) The hematopoietic and epithelial forms of CD44 are distinct polypeptides with different adhesion potentials for hyaluronate-bearing cells. EMBO J 10:343–348PubMedGoogle Scholar
  122. 119.
    Jackson DG, Buckley J, Bell JI (1992) Multiple variants of the human lymphocyte homing receptor CD44 generated by insertions at a single site in the extracellular domain. J Biol Chem 267:4732–4739PubMedGoogle Scholar
  123. 120.
    Cooper DL, Dougherty G, Harn HJ, Jackson S, Baptist EW, Byers J, Datta A, Phillips G, Isola NR (1992) The complex CD44 transcriptional unit; alternative splicing of three internal exons generates the epithelial form of CD44. Biochem Biophys Res Commun 182:569–578CrossRefPubMedGoogle Scholar
  124. 121.
    Matsumura Y, Tarin D (1992) Significance of CD44 gene products for cancer diagnosis and disease evaluation. Lancet 340:1053–1058CrossRefPubMedGoogle Scholar
  125. 122.
    Tanabe KK, Ellis LM, Saya H (1993) Expression of CD44R1 adhesion molecule in colon carcinomas and metastases. Lancet 341:725–726CrossRefPubMedGoogle Scholar
  126. 123.
    Heider K-H, Hofmann M, Hors E, van den Berg F, Ponta H, Herrlich P, Pals ST (1993) A human homologue of the rat metastasis-associated variant of CD44 is expressed in colorectal carcinomas and adenomatous polyps. J Cell Biol 120:227–233CrossRefPubMedGoogle Scholar
  127. 124.
    Yokozaki H, Ito R, Nakayama H, Kuniyasu H, Taniyama K, Tahara E (1994) Expression of CD44 abnormal transcripts in human gastric carcinomas. Cancer Lett 83:229–234CrossRefPubMedGoogle Scholar
  128. 125.
    Matsumura Y, Sugiyama M, Matsumura S, Hayle AJ, Robinson P, Smith JC, Tarin D (1995) Unusual retention of introns in CD44 gene transcripts in bladder cancer provides new diagnostic and clinical oncological opportunities. J Pathol 177:11–20CrossRefPubMedGoogle Scholar
  129. 126.
    Yoshida K, Bolodeoku J, Sugino T, Goodison S, Matsumura Y, Warren BF, Toge T, Tahara E, Tarin D (1995) Abnormal retention of intron 9 in CD44 gene transcripts in human gastrointestinal tumors. Cancer Res 55:4273–4277PubMedGoogle Scholar
  130. 127.
    Higashikawa K, Yokozaki H, Ue T, Taniyama K, Ishikawa T, Tarin D, Tahara E (1996) Evaluation of CD44 transcription variants in human digestive tract carcinomas and normal tissues. Int J Cancer 66:11–17CrossRefPubMedGoogle Scholar
  131. 128.
    Weber GF, Ashkar S, Glimcher MJ, Cantor H (1996) Receptor—ligand interaction between CD44 and osteopontin (Eta-1). Science 271:509–512CrossRefPubMedGoogle Scholar
  132. 129.
    Ruoslahti E, Pierschbacher MD (1987) New perspectives in cell adhesion: RGD and integrins. Science 238:491–497CrossRefPubMedGoogle Scholar
  133. 130.
    Nakayama H, Yasui W, Yokozaki H, Tahara E (1993) Reduced expression of nm23 is associated with metastasis of human gastric carcinomas. Jpn J Cancer Res 84:184–190CrossRefPubMedGoogle Scholar
  134. 131.
    Sier CF, Verspaget HW, Griffioen G, Ganesh S, Vloedgraven HJ, Lamers CB (1993) Plasminogen activators in normal tissue and carcinomas of the human oesophagus and stomach. Gut 34:80–85CrossRefPubMedGoogle Scholar
  135. 132.
    Tanaka N, Fukao H, Ueshima S, Okada K, Yasutomi M, Matsuo O (1991) Plasminogen activator inhibitor 1 in human carcinoma tissues. Int J Cancer 48:481–484CrossRefPubMedGoogle Scholar
  136. 133.
    Nekarda H, Schmitt M, Ulm K, Wenninger A, Vogelsang H, Becker K, Roder JD, Fink U, Siewert JR (1994) Prognostic impact of urokinasetype plasminogen activator and its inhibitor PAI-1 in completely resected gastric cancer. Cancer Res 54:2900–2907PubMedGoogle Scholar
  137. 134.
    Lotan R, Ito H, Yasui W, Yokozaki H, Lotan D, Tahara E (1994) Expression of a 31-kDa lactosidebinding lectin in normal human gastric mucosa and in primary and metastatic gastric carcinomas. Int J Cancer 56:474–480CrossRefPubMedGoogle Scholar
  138. 135.
    Tahara E (1995) Genetic alterations in human gastrointestinal cancers: the application to molecular diagnosis. Cancer 75:1410–1417CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan 1997

Authors and Affiliations

  • Hiroshi Yokozaki
    • 1
  • Hiroki Kuniyasu
    • 1
  • Shuho Semba
    • 1
  • Wataru Yasui
    • 1
  • Eiichi Tahara
    • 1
  1. 1.First Department of PathologyHiroshima University School of MedicineMinami-ku, Hiroshima 734Japan

Personalised recommendations