Multiple Genetic Alterations and Abnormal Growth Factor Network in Human Esophageal Carcinomas

  • Kazuhiro Yoshida
  • Wataru Yasui
  • Yoshihiro Kagawa
  • Eiichi Tahara


Esophageal carcinoma is the most malignant gastrointestinal neoplasm. Multiple genetic alterations of oncogenes and tumor suppressor genes take place in esophageal squamous cell carcinomas. Co-amplification of cyclin D1, hst-1, and int-2 gene is found in 40% of the primary tumors and almost all metastatic tumors. The prognosis of the patient with gene amplification is evidently poorer than those without amplification. Multiple alterations of tumor suppressor genes and negative cell cycle regulators, including p.53 gene, Rb gene, BRCA1 gene, p16 (MTS1), p15 (MTS2), and p21 (WAF1/CIP1), play an important role in the development and progression of esophageal carcinomas. Furthermore, multiple growth factor—receptor loops exist and participate in the autocrine growth of the esophageal cancer. They include epidermal growth factor (EGF), transforming growth factors (TGF) a and β, and platelet-derived growth factor (PDGF). Overexpression of EGF, TGF-α, and EGFR is closely correlated with the malignant behavior of tumor cells and patient prognosis. These growth factors stimulate production of the interstitial degradation enzymes and down-regulation of Ecadherin function, which may lead to cell invasion and metastasis.


Epidermal Growth Factor Receptor Esophageal Cancer Esophageal Squamous Cell Carcinoma Esophageal Carcinoma Epidermal Growth Factor Receptor Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tahara E (1995) Genetic alterations in human gastrointestinal cancers. Cancer 75:1410–1417PubMedCrossRefGoogle Scholar
  2. 2.
    Qui SL, Yang GR (1988) Precursor lesion of esophageal cancer in high-risk populations in Henan province, China. Cancer 62:551–557CrossRefGoogle Scholar
  3. 3.
    Tahara E (1996) Molecular diagnosis of gastrointestinal cancers: the application to clinical practice. Int J Clin Oncol 1:63–68CrossRefGoogle Scholar
  4. 4.
    Yoshida K, Kawami H, Kuniyasu H, Nishiyama M, Yasui W, Hirai T, Toge T, Tahara E (1994) Coamplification of cyclin D, hst-1 and int-2 genes is a good biological marker of high malignancy for human esophageal carcinomas. Oncol Rep 1:493–496PubMedGoogle Scholar
  5. 5.
    Kitagawa Y, Ueda M, Ando N, Shinozawa Y, Shimizu N, Abe O (1991) Significance of int-2/hst-1 coamplification as a prognostic factor in patients with esophageal carcinoma. Cancer Res 51:1504–1508PubMedGoogle Scholar
  6. 6.
    Tsuda T, Tahara E, Kajiyama G, Sakamoto H, Terada M, Sugimura T (1989) High incidence of coamplification of hst-1 and int-2 genes in human esophageal carcinomas. Cancer Res 49: 5505–5508PubMedGoogle Scholar
  7. 7.
    Aoki T, Du X, Nishihira T, Matsubara T, Nakamura Y (1994) Allelotype of esophageal carcinoma. Genes Chromosom Cancer 10:177–182PubMedCrossRefGoogle Scholar
  8. 8.
    Shibagaki I, Shimada Y, Wagata T, Ikenaga M, Imamura M, Ishizaki K (1994) Allelotype analysis of esophageal squamous cell carcinoma. Cancer Res 54:2996–3000PubMedGoogle Scholar
  9. 9.
    Igaki H, Sasaki H, Kishi T, Sakamoto H, Tachimori Y, Kato H, Watanabe H, Sugimura T, Terada M (1994) Highly frequent homozygous deletion of the p16 gene in esophageal cancer cell lines. Biochem Biophys Res Commun 203:1090–1095PubMedCrossRefGoogle Scholar
  10. 10.
    Zhou X, Tarmin L, Yin J, Jiang HY, Suzuki H, Rhyu MG, Abraham JM, Meltzer SJ (1994) The MTS1 gene is frequently mutated in primary human esophageal tumours. Oncogene 9:3737–3741PubMedGoogle Scholar
  11. 11.
    Piris MA, Sanchez-Beato M, Villuendas R, Martinez JC (1996) Oncogenes and tumoursuppressor genes. In: Cell proliferation in cancer. Oxford Press, Oxford, pp 45–81Google Scholar
  12. 12.
    Weinberg RA (1991) Tumour suppressor genes. Science 254:1138–1146PubMedCrossRefGoogle Scholar
  13. 13.
    Brookstein R, Shew JY, Chen PL, Scully P, Lee WH (1990) Suppression of tumourigenicity of human prostate carcinoma cells by replacing a mutated Rb gene. Science 247:712–715CrossRefGoogle Scholar
  14. 14.
    Haber DA, Buckler AJ, Glaser T, Call KM, Pelletier J, Sohn RL, Douglass EC, Housman DE (1990) An internal deletion within an 11p13 zinc finger gene contributes to the development of Wilm’s tumour. Cell 61:1257–1269PubMedCrossRefGoogle Scholar
  15. 15.
    Kinzler KW, Nilbert MC, Su L-K, Vogelstein B, Bryan TM, Lery DB, Smith KJ, Pressinger AC, Hedge P, Mckechnie D, Finniear R, Markham A, Groffen J, Boguski MS, Altschul SF, Horii A, Ando H, Miyoshi Y, Miki Y, Nishisho I, Nakamura Y (1991) Identification of FAP locus genes from chromosome 5q21. Science 253:661–665PubMedCrossRefGoogle Scholar
  16. 16.
    Kanda Y, Nishiyama Y, Shimada Y, Imamura M, Nomura H, Hiai H, Hukumoto M (1994) Analysis of gene amplification and overexpression in human esophageal carcinoma cell lines. Int J Cancer 58: 291–297PubMedCrossRefGoogle Scholar
  17. 17.
    Motokura T, Bloom T, Kim HG, Juppner H, Ruderman JV, Kronenberg HM, Arnold A (1991) A novel cyclin encoded by a bcl-II linked candidate oncogene. Nature 350:512–515PubMedCrossRefGoogle Scholar
  18. 18.
    Lew DJ, Vjekoslav D, Reed SI (1991) Isolation of three novel human cyclin by rescue of Cl cyclin (Cln) function in yeast. Cell 66:1197–1206PubMedCrossRefGoogle Scholar
  19. 19.
    Jiang W, Kahn SM, Tomita N, Zhang Y-J, Lu S-H, Weinstein B (1992) Amplification and expression of the human cyclin D gene in esophageal cancer. Cancer Res 52:2980–2983PubMedGoogle Scholar
  20. 20.
    Leach FS, Elledge SJ, Sherr CJ, Willson JKV, Markowitz S, Kinzler KW, Vogelstein B (1993) Amplification of cyclin genes in colorectal carcinomas. Cancer Res 52:1986–1989Google Scholar
  21. 21.
    Galiana C, Fusco A, Martel N, Nishihira T, Hirohashi S, Yamasaki H (1993) Possible role of activated ras genes in human esophageal carcinogenesis. Int J Cancer 54:978–982PubMedCrossRefGoogle Scholar
  22. 22.
    Cordon-Cardo C (1995) Mutaion of cell cycle regulators: biological and clinical implications for human neoplasia. Am J Pathol 147:545–560PubMedGoogle Scholar
  23. 23.
    Noda A, Ning Y, Venable SF, Percira-Smith OM, Smith JR (1994) Cloning of senescent cell derived inhibitors of DNA synthesis using an expression screen. Exp Cell Res 11:90–98CrossRefGoogle Scholar
  24. 24.
    Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ (1993) The p21 cdk-interacting protein Cip is a potent inhibitor of G1 cyclin-dependent kinase. Cell 75:805–816PubMedCrossRefGoogle Scholar
  25. 25.
    El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer E, Kinzler KW, Vogelstein B (1993) WAF-1, a potential mediator of p.53 tumour suppression. Cell 75:817–825PubMedCrossRefGoogle Scholar
  26. 26.
    Toyoshima H, Hunter T (1994) P27, a novel inhibitor of G1 cyclin-cdk protein kinase activity, is related to P21. Cell 78:67–74PubMedCrossRefGoogle Scholar
  27. 27.
    Serrano M, Hannon GJ, Beach D (1993) A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 366:704–707PubMedCrossRefGoogle Scholar
  28. 28.
    Hammon GJ, Beach D (1994) p15INK4B is a potential effector of TGF-β induced cell cycle arrest. Nature 371:257–261CrossRefGoogle Scholar
  29. 29.
    Tahara E, Semba S, Tahara H (1996) Molecular biological observations in gastric cancer. Semin Oncol 23:307–315PubMedGoogle Scholar
  30. 30.
    Knudson AG (1989) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 68:820–823CrossRefGoogle Scholar
  31. 31.
    Wang Li D, Zhou Q, Hong JY, Qui SL, Yang CS (1996) P53 protein accumulation and gene mutations in multifocal esophageal precancerous lesions from symptom free subjects in a high incidence area for esophageal carcinoma in Henan, China. Cancer 77:1244–1249CrossRefGoogle Scholar
  32. 32.
    Hollstein MC, Metcalf RA, Welsh JA, Montesano R, Harris CC (1990) Frequent mutation of the p.53 gene in human esophageal cancer. Proc Natl Acad Sci USA 87:9958–9961PubMedCrossRefGoogle Scholar
  33. 33.
    Hollstein M, Sidransky D, Vogelstein B, Harris CC (1991) p53 mutations in human cancers. Science 253:49–53PubMedCrossRefGoogle Scholar
  34. 34.
    Shimaya K, Shiozaki H, Inoue M, Tahara H, Monden T, Shimano T, Mori T (1993) Significance of P53 expression as a prognostic factor in esophageal squamous cell carcinoma. Virchows Arch [A] 422:271–276CrossRefGoogle Scholar
  35. 35.
    Miyahita T, Reed JC (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80:293–299CrossRefGoogle Scholar
  36. 36.
    Powell SM, Papadopous N, Kinzler KW, Smolinski KN, Meltzer SJ (1994) APC gene mutation cluster regions are rare in esophageal cancers. Gastroenterology 107:1759–1763PubMedGoogle Scholar
  37. 37.
    Boynton RF, Huang Y, Blount PL, Reid BJ, Raskind WH, Haggitt RC, Newkirk C, Resau JH, Yin J, McDaniel T (1991) Frequent loss of heterozygosity at the retinoblastoma locus in human esophageal cancers. Cancer Res 51:5766–5769PubMedGoogle Scholar
  38. 38.
    Mori T, Aoki T, Matsubara T, Iida F, Du X, Nishihira T, Mori S, Nakamura Y (1994) Frequent loss of heterozygosity in the region including BRCA1 on chromosome 17q in squamous cell carcinoma of the esophagus. Cancer Res 54:1638–1640PubMedGoogle Scholar
  39. 39.
    Ohta M, Onoue H, Cotticelli MG, Kastury K, Baffa R, Palazzo J, Siprashvili Z, Mori M, McCue P, Druck T, Croce CM, Huebner K (1996) The FHIT gene, spanning the chromosome 3p14.2 fragile site and renal carcinoma-associated t(3;8) breakpoint, is abnormal in digestive tract cancers. Cell 84:587–597PubMedCrossRefGoogle Scholar
  40. 40.
    Mao L, Fan YH, Lotan L, Hong WK (1996) Frequent abnormalities of FHIT, a candidate tumour suppressor gene, in head and neck cell lines. Cancer Res 56:5128–5131PubMedGoogle Scholar
  41. 41.
    Fishel R, Lescoe MK, Rao MRS, Copeland NG, Jenkins NA, Garber J, Kane M, Kolodner R (1993) The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 75:1027–1038PubMedCrossRefGoogle Scholar
  42. 42.
    Papadopoulos N, Nicolaides NC, Wei YF, Ruben SM, Carter KC, Rosen CA, Haseltine WA, Fleischmann RD, Fraser CM, Adams MD (1994) Mutation of a mutL homolog in hereditary colon cancer. Science 263:1625–1629PubMedCrossRefGoogle Scholar
  43. 43.
    Nakashima H, Mori M, Mimori K, Inoue H, Shibuta K, Baba K, Mafune K, Akiyoshi T (1995) Microsatellite instability in Japanese esophageal carcinoma. Int J Cancer 64:286–289PubMedCrossRefGoogle Scholar
  44. 44.
    Ogasawara S, Maesawa C, Tamura G, Satodate R (1995) Frequent microsatellite alterations on chromosome 3p in esophageal squamous cell carcinoma. Cancer Res 55:891–894PubMedGoogle Scholar
  45. 45.
    Sporn MB, Roberts AB (1985) Autocrine growth factors and cancer. Nature 313:745–747PubMedCrossRefGoogle Scholar
  46. 46.
    Ullrich A, Schlessinger J (1990) Signal transduction by receptors with tyrosine kinase activity. Cell 61: 203–212PubMedCrossRefGoogle Scholar
  47. 47.
    Pawson T, Gish GD (1992) SH2 and SH3 domains; from structure to function. Cell 71:359–362PubMedCrossRefGoogle Scholar
  48. 48.
    Koch CA, Anderson D, Moran MF, Ellis C, Pawson T (1991) SH2 and SH3 domains; elements that control interactions of cytoplasmic signaling proteins. Science 252:668–674PubMedCrossRefGoogle Scholar
  49. 49.
    Tahara E, Yasui W, Yokozaki H (1996) Abnormal growth factor networks in neoplasia. In: Cell proliferation in cancer. Oxford Press, Oxford, pp 133–153Google Scholar
  50. 50.
    Heidecker G, Kelch W, Morrison DK, Rapp UR (1992) The role of Raf-1-phosphorylation in signal transduction. Adv Cancer Res 58:53–73PubMedCrossRefGoogle Scholar
  51. 51.
    Yoshida K, Yasui W, Ito H, Tahara E (1990) Growth factors in progression of human esophageal and gastric carcinomas. Exp Pathol 40:291–300PubMedCrossRefGoogle Scholar
  52. 52.
    Wong ST, Winchell LF, McCune BK, Earp HS, Teixido J, Massague J, Herman BM, Lee DC (1989) The TGF-a precursor on the cell surface binds to the EGF receptor on adjacent cells, leading to signal transduction. Cell 56:495–506PubMedCrossRefGoogle Scholar
  53. 53.
    Downward J, Yarden Y, Mayes E, Scrace G, Totty N, Stockwell P, Ullrich A, Schlessinger J, Waterfield WD (1984) Close similarity of epidermal growth factor receptor and v-erb-B oncogene protein sequences. Nature 307:521–527PubMedCrossRefGoogle Scholar
  54. 54.
    Hunts J, Ueda M, Ozawa S, Abe O, Patan I, Shimizu N (1985) Hyperproduction and gene amplification of the epidermal growth factor receptor in squamous cell carcinoma. Jpn J Cancer Res 76:663–666PubMedGoogle Scholar
  55. 55.
    Wong AJ, Binger SH, Binger DD, Kinzler KW, Hamilton SR, Vogelstein B (1987) Increased expression of epidermal growth factor receptor gene in malignant gliomas is invariably associated with gene amplification. Proc Natl Acad Sci USA 84: 6899–6903PubMedCrossRefGoogle Scholar
  56. 56.
    Sainsbury JRC, Farndon JR, Needham GK, Malcolm AJ, Harris AL (1987) Epidermal growth factor receptor status as predictor of early recurrence or of death from breast cancer. Lancet 1:1398–1401PubMedGoogle Scholar
  57. 57.
    Yoshida K, Tsuda T, Mtsumura T, Tsujino T, Hattori T, Ito H, Tahara E (1989) Amplification of epidermal growth factor receptor (EGFR) gene and oncogenes in human gastric carcinomas. Virchows Arch (B] 57:285–290CrossRefGoogle Scholar
  58. 58.
    Ozawa S, Ueda M, Ando N, Abe O, Shimizu N (1988) Epidermal growth factor receptors in cancer tissue of esophagus, lung, pancreas, colorectum, breast and stomach. Jpn J Cancer Res 79:1201–1207PubMedCrossRefGoogle Scholar
  59. 59.
    Mukaida H, Toi M, Hirai T, Yamashita Y, Toge T (1991) Clinical significance of the expression of epidermal growth factor and its receptor in esophageal cancer. Cancer 68:142–148PubMedCrossRefGoogle Scholar
  60. 60.
    Yoshida K, Tsuda T, Tsujino T, Ito M, Niimoto M, Tahara E (1990) EGF and TGFa, the ligand of hyperproduced EGFR in human esophageal carcinoma cells, act as autocrine growth factors. Int J Cancer 45:131–135PubMedCrossRefGoogle Scholar
  61. 61.
    Yoshida K, Kuniyasu H, Yasui W, Kitadai Y, Toge T, Tahara E (1993) Expression of growth factors and their receptors in human esophageal carcinomas; regulation of expression by epidermal growth factor and transforming growth factor-a. J Cancer Res Clin Oncol 119:401–407PubMedCrossRefGoogle Scholar
  62. 62.
    Ciccordicola A, Dono R, Obici S, Simeone A, Zollo M, Persico MG (1989) Molecular characterization of a gene of the EGF family expressed in undifferentiated human NTERA2 teratocarcinoma cell. EMBO J 8:1987–1991Google Scholar
  63. 63.
    Shoyab M, Plowman GD, McDonald VL, Bradley JG, Todaro GJ (1989) Structure and function of human amphiregulin: a member of the epidermal growth factor family. Science 243:1074–1076PubMedCrossRefGoogle Scholar
  64. 64.
    Ciardiello F, Dono R, Kim N, Persico MG, Slamon DS (1991) Expression of cripto, a novel gene of the epidermal growth factor gene family, leads to the in vitro transformation of a normal mouse mammary epithelial cell line. Cancer Res 51:1051–1054PubMedGoogle Scholar
  65. 65.
    Kuniyasu H, Yoshida K, Yokozaki H, Yasui W, Ito H, Toge T, Ciardiello F, Persico G, Saeki T, Salmon DS, Tahara E (1991) Expression of cripto, a novel gene of the epidermal growth factor family, in human gastrointestinal carcinomas. Jpn J Cancer Res 82:969–973PubMedCrossRefGoogle Scholar
  66. 66.
    Johnson GR, Kannan B, Shoyab M, Stromberg K (1993) Amphiregulin induces tyrosine phosphorylation of the epidermal growth factor receptor and p185 erbB2. J Biol Chem 268:2924–2931PubMedGoogle Scholar
  67. 67.
    Matsui T, Heidaran M, Miki T, Toru M, Popescu N, La Rochelle W, Kraus M, Pierce J, Aaronson SA (1989) Isolation of a novel receptor cDNA establishes the existence of two PDGF receptor genes. Science 243:800–803PubMedCrossRefGoogle Scholar
  68. 68.
    Waterfield MD, Scrace GT, Whittle N, Stroobant P, Johnsson A, Wasteson A, Westmark B, Heldin CH, Huang JS, Deuel TF (1983) Platelet-derived growth factor is structurally related to the putative transforming protein P28sis of simian sarcoma virus. Nature 304:35–39PubMedCrossRefGoogle Scholar
  69. 69.
    Bejcek BE, Li DY, Deuel TF (1989) Transformation by v-sis occurs by an internal autoactivation mechanism. Science 245:1496–1499PubMedCrossRefGoogle Scholar
  70. 70.
    Tsuda T, Yoshida K, Tsujino T, Nakayama H, Kajiyama G, Tahara E (1989) Coexpression of platelet-derived growth factor (PDGF) A chain and PDGF receptor genes in human gastric carcinomas. Jpn J Cancer Res 80:813–817PubMedCrossRefGoogle Scholar
  71. 71.
    Pandiell A, Massague J (1991) Cleavage of the membrane precursor for transforming growth factor α is a regulated process. Proc Natl Acad Sci USA 88:1726–1730CrossRefGoogle Scholar
  72. 72.
    Enoki Y, Niwa O, Yokoro K, Toge T (1990) Analysis of clonal evolution in tumour consisting of pSV2 neo-transfected mouse fibrosarcoma clones. Jpn J Cancer Res 81:141–147PubMedCrossRefGoogle Scholar
  73. 73.
    Matsuoka H, Sugimach K, Ueo H, Kuwano H, Nakao S, Nakayama M (1987) Sex hormone response of a newly established squamous cell line derived from clinical esophageal carcinoma. Cancer Res 47:4134–4140PubMedGoogle Scholar
  74. 74.
    Taipale J, Miyazono K, Heldin CH, Keski-Oja J (1994) Latent transforming growth factor-beta 1 associates to fibroblast extracellular matrix via latent TGF-beta binding protein. J Cell Biol 124:171–181PubMedCrossRefGoogle Scholar
  75. 75.
    Massague J (1992) Receptors for the TGF-β family. Cell 69:1067–1070PubMedCrossRefGoogle Scholar
  76. 76.
    Tahara E, Kuniyasu H, Yasui W, Yokozaki H (1994) Abnormal expression of growth factors and their receptors in stomach cancer. Gann Monogr Cancer Res 42:163–173Google Scholar
  77. 77.
    Ito M, Yasui W, Kyo E, Yokozaki H, Nakayama H, Ito H, Tahara E (1992) Growth inhibition of transforming growth factor β on human gastric carcinoma cells: receptor and postreceptor signaling. Cancer Res 52:295–300PubMedGoogle Scholar
  78. 78.
    Tarin D (1996) Metastasis: secondary proliferation in distant organs. In: Cell proliferation in cancer. Oxford Press, Oxford, pp 316–336Google Scholar
  79. 79.
    Folkman J, Klagsbrun M (1987) Angiogenic factors. Science 235:442–447PubMedCrossRefGoogle Scholar
  80. 80.
    Liotta LA, Tyggvason K, Garbisa S, Hart I, Foltz CM, Shafie S (1980) Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature 284:67–68PubMedCrossRefGoogle Scholar
  81. 81.
    Kerr LD, Holt JT, Matrisian LM (1988) Growth factors regulate transin gene expression by fos-dependent and c-fos-independent pathways. Science 242:1424–1427PubMedCrossRefGoogle Scholar
  82. 82.
    Yoshida K, Tsujino T, Yasui W, Kameda T, Sano T, Nakayama H, Toge T, Tahara E (1990) Induction of growth factor receptor and metalloproteinase genes by epidermal growth factor and for transforming growth factor alpha in human gastric carcinoma cell line MKN-28. Jpn J Cancer Res 81:793–798PubMedCrossRefGoogle Scholar
  83. 83.
    Frixen UH, Behhrens J, Sachs M, Eberle G, Voss B, Warda A (1991) E-Cadherin-mediated cell—cell adhesion prevents invasiveness of human carcinoma cells. J Cell Biol 113:173–185PubMedCrossRefGoogle Scholar
  84. 84.
    Shiozaki H, Tahara H, Oka H, Miyata M, Kobayashi K, Tamura S (1991) Expression of immuno-reactive E-cadherin adhesion molecules in human cancers. Am J Pathol 139:17–23PubMedGoogle Scholar
  85. 85.
    Kadowaki T, Shiozaki H, Inoue M, Tamura S, Oka H, Doki Y (1994) E-Cadherin and α-catenin expression in human esophageal cancer. Cancer Res 54:196–201Google Scholar
  86. 86.
    Shiozaki H, Oka H, Inoue M, Tamura S, Monden M (1996) E-Cadherin mediated adhesion system in cancer cells. Cancer 77:1605–1613PubMedGoogle Scholar
  87. 87.
    Yasui W, Kuniyasu H, Akama Y, Kitahara K, Nagafuchi A, Ishihara S, Tsukita S, Tahara E (1995) Expression of E-cadherin, α-catenins in human gastric carcinomas: correlation with histology and tumor progression. Oncol Rep 2:111–117PubMedGoogle Scholar
  88. 88.
    Rubinfeld B, Souza B, Albert B, Muller I, Chamberlain O, Masiarz SC (1993) Association of the APC gene product with beta-catenin. Science 262:1731–1734PubMedCrossRefGoogle Scholar
  89. 89.
    Su LK, Vogelstein B, Kinzler KW (1993) Association of the APC tumour suppressor protein with catenins. Science 262:1734–1737PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 1997

Authors and Affiliations

  • Kazuhiro Yoshida
    • 1
  • Wataru Yasui
    • 2
  • Yoshihiro Kagawa
    • 1
  • Eiichi Tahara
    • 2
  1. 1.Department of Surgical Oncology, Research Institute for Radiation Biology and MedicineHiroshima University School of MedicineMinami-ku, Hiroshima 734Japan
  2. 2.First Department of PathologyHiroshima University School of MedicineMinami-ku, Hiroshima 734Japan

Personalised recommendations