Telomeres and Telomerase in Gastrointestinal Cancers

  • Hidetoshi Tahara
  • Eiji Tahara
  • Eiichi Tahara
  • Toshinori Ide


Most gastrointestinal and hepatocellular carcinomas have strong telomerase activity that correlates well with malignant progression, despite their shortened telomeres. Precancerous lesions including gastric intestinal metaplasia, gastric and colorectal adenomas, and normal epithelial stem cells express weak telomerase activity and low levels of human telomerase RNA component (hTR). These observations suggest that telomerase activity responsible for cell immortality may reflect the progressive selection of clonogenic stem cells in the arrest of differentiation, and that telomerase activity may play a pivotal role in an early stage of gastrointestinal carcinogenesis. Moreover, quantitation of telomerase activity and in situ hybridization using hTR as a probe have important clinical applications to the diagnosis of gastroenterological cancer


Telomere Length Telomeric Repeat Amplification Protocol Telomeric Repeat Amplification Protocol Gastric Intestinal Metaplasia Telomeric Repeat Amplification Protocol Assay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Harley CB, Kim NW, Prowse KR, Weinrich SL, Hirsch KS, West MD, Bacchetti S, Hirte HW Counter CM, Greider CW, Wright WE, Shay JW (1994) Telomerase, cell immortality, and cancer, vol LVIX. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 1–9Google Scholar
  2. 2.
    Harley CB, Villeponteau B (1995) Telomeres and telomerase in aging and cancer. Curr Opin Genet Dev 5:249–255PubMedCrossRefGoogle Scholar
  3. 3.
    Sager R (1991) Senescence as a mode of tumor suppression. Environ Health Perspect 93:59–62PubMedCrossRefGoogle Scholar
  4. 4.
    Shay JW, Wright WE, Werbin H (1993) Toward a molecular understanding of human breast cancer: a hypothesis. Breast Cancer Res Treat 25:83–94PubMedCrossRefGoogle Scholar
  5. 5.
    Praeger B (1986) In-vitro studies of aging. Dermatol Clin 4:359–369PubMedGoogle Scholar
  6. 6.
    Hayflick L (1980) Cell aging. Annu Rev Gerontol Geriatr 1:26–67Google Scholar
  7. 7.
    Hayflick L (1979) Cell biology of aging. Fed Proc 38:1847–1850PubMedGoogle Scholar
  8. 8.
    Hayflick L (1965) The limited in vitro lifespan of human diploid cell strains. Exp Cell Res 37:614–636PubMedCrossRefGoogle Scholar
  9. 9.
    Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621PubMedCrossRefGoogle Scholar
  10. 10.
    Goldstein S (1969) Lifespan of cultured cells in Progeria. Lancet 1:424PubMedCrossRefGoogle Scholar
  11. 11.
    Goldstein S (1990) Replicative senescence: the human fibroblast comes of age. Science 249:1129–1133PubMedCrossRefGoogle Scholar
  12. 12.
    Shay JW, Wright WE, Werbin H (1991). Defining the molecular mechanisms of human cell immortalization. Biochim Biophys Acta 1072:1–7PubMedGoogle Scholar
  13. 13.
    Shay JW, Wright WE (1989) Quantitation of the frequency of immortalization of normal human diploid fibroblasts by SV40 large T-antigen. Exp Cell Res 184:109–118PubMedCrossRefGoogle Scholar
  14. 14.
    Tsuyama N, Miura M, Kitahira M, Ishibashi S, Ide T (1991) SV40 T-antigen is required for maintenance of immortal growth in SV40-transformed human fibroblasts. Cell Struct Funct 16:55–62PubMedCrossRefGoogle Scholar
  15. 15.
    Lumpkin CK, McClung JK, Pereira SOM, Smith JR (1986) Existence of high abundance antiproliferative mRNAs in senescent human diploid fibroblasts. Science 232:393–395PubMedCrossRefGoogle Scholar
  16. 16.
    Seshadri T, Uzman JA, Oshima J, Campisi J (1993) Identification of a transcript that is down-regulated in senescent human fibroblasts—cloning, sequence analysis, and regulation of the human L7 ribosomal protein gene. J Biol Chem 268:18474–18480PubMedGoogle Scholar
  17. 17.
    Hara E, Yamaguchi T, Tahara H, Tsuyama N, Tsurui H, Ide T, Oda K (1993) DNA-DNA subtractive cDNA cloning using oligo (dT) (30)-latex and PCR—identification of cellular genes which are overexpressed in senescent human diploid fibroblasts. Anal Biochem 214:58–64PubMedCrossRefGoogle Scholar
  18. 18.
    Wadhwa R, Kaul SC, Ikawa Y, Sugimoto Y (1993) Identification of a novel member of mouse hsp70 family—its association with cellular mortal phenotype. J Biol Chem 268:6615–6621PubMedGoogle Scholar
  19. 19.
    Noda A, Ning Y, Venable SF, Pereira-Smith OM, Smith JR (1994) Cloning of senescent cell derived inhibitors of DNA synthesis using an expression screen. Exp Cell Res 211:90–98PubMedCrossRefGoogle Scholar
  20. 20.
    Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ (1993) The p21 cdk-interacting protein Cipl is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75:805–816PubMedCrossRefGoogle Scholar
  21. 21.
    El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Edward Mercer W, Kinzler KW, Vogelstein B (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825PubMedCrossRefGoogle Scholar
  22. 22.
    Tahara H, Sato E, Noda A, Ide T (1995) Increase in expression level of p21<sup>sdil/cipl/wafl</sup> with increasing division age in both normal and SV40-transformed human fibroblasts. Oncogene 10:835–840PubMedGoogle Scholar
  23. 23.
    Blackburn EH (1991) Telomeres. Trends Biochem Sci 16:378–381PubMedCrossRefGoogle Scholar
  24. 24.
    Blackburn EH (1991). Structure and function of telomeres. Nature 350:569–573PubMedCrossRefGoogle Scholar
  25. 25.
    De Lange T (1992) Human telomeres are attached to the nuclear matrix. EMBO J 11:717–724PubMedGoogle Scholar
  26. 26.
    De Lange T, Shiue L, Myers RM, Cox DR, Naylor SL Killery AM, Varmus HE (1990) Structure and variability of human chromosome ends. Mol Cell Biol 10:518–527PubMedGoogle Scholar
  27. 27.
    De Lange T (1992) Human telomeres are attached to the nuclear matrix. EMBO J 11:717–724PubMedGoogle Scholar
  28. 28.
    Watson J (1972) Origin of concatameric T4 DNA. Nature 239:197–201CrossRefGoogle Scholar
  29. 29.
    Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345:458–460PubMedCrossRefGoogle Scholar
  30. 30.
    Harley CB (1991) Telomere loss: mitotic clock or genetic time bomb? Mutat Res 256:271–282PubMedCrossRefGoogle Scholar
  31. 31.
    Levy MZ, Allsopp RC, Futcher AB, Greider CW, Harley CB (1992) Telomere end-replication problem and cell aging. J Mol Biol 225:951–960PubMedCrossRefGoogle Scholar
  32. 32.
    Counter CM, Avilion AA, LeFeuvre CE, Stewart NG, Greider CW, Harley CB, Bacchetti S (1992) Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J 11:1921–1929PubMedGoogle Scholar
  33. 33.
    Allsopp RC, Vaziri H, Patterson C, Goldstein S, Younglai EV, Futcher AB, Greider CW, Harley CB (1992) Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci USA 89:10114–10118PubMedCrossRefGoogle Scholar
  34. 34.
    Allsopp RC, Chang E, Kashefi-Aazam M, Rogaev EI, Piatyszek MA, Shay JW, Harley CB (1995) Telomere shortening is associated with cell division in vitro and in vivo. Exp Cell Res 220:194–200PubMedCrossRefGoogle Scholar
  35. 35.
    Greider CW, Blackburn EH (1985) Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43:405–413PubMedCrossRefGoogle Scholar
  36. 36.
    Collins K, Kobayashi R, Greider CW (1995) Purification of Tetraphymena telomerase and cloning of genes encoding the two protein components of the enzyme. Cell 81:677–686PubMedCrossRefGoogle Scholar
  37. 37.
    Morin GB (1989) The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats. Cell 59:521–529PubMedCrossRefGoogle Scholar
  38. 38.
    Greider CW, Blackburn EH (1989) A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature 337:331–337PubMedCrossRefGoogle Scholar
  39. 39.
    Feng J, Funk WD, Wang SS, Weinrich SL, Avilion AA, Chiu CP, Adams RR, Chang E, Allsopp RC, Yu J, Le S, West MD, Harley CB, Andrews WH, Greider CW, Villeponteau B (1995) The RNA component of human telomerase. Science 269:1236–1241PubMedCrossRefGoogle Scholar
  40. 40.
    Autexier C, Greider CW (1996) Telomerase and cancer; revisiting the telomere hypothesis. TIBS 21:387–391PubMedGoogle Scholar
  41. 41.
    Chong L, van Steensel B, Broccoli D, Erdjument-Bromage H, Hanish J, Tempst P, de Lange T (1995) A Human telomeric protein. Science 270:1663–1667PubMedCrossRefGoogle Scholar
  42. 42.
    Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL, Shay JW (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266:2011–2015PubMedCrossRefGoogle Scholar
  43. 43.
    Yasui W, Tahara E (1996) Telomerase and cancer. J Cancer Res Clin Oncol 122:770–773PubMedCrossRefGoogle Scholar
  44. 44.
    Tahara H, Kuniyasu H, Yokozaki H, Yasui W, Shay JW, Ide T, Tahara E (1995) Telomerase activity in preneoplastic and neoplastic gastric and colorectal lesions. Clin Cancer Res 1:1245–1251PubMedGoogle Scholar
  45. 45.
    Wright WE, Shay JW, Piatyszek MA (1995) Modifications of a telomeric repeat amplification protocol (TRAP) result in increased reliability, linearity and sensitivity. Nucleic Acids Res 23: 3794–3795PubMedCrossRefGoogle Scholar
  46. 46.
    Ohyashiki JH, Ohyashiki K, Sano T, Toyama K (1996) Non-radioisotopic and semiquantitative procedure for terminal repeat amplification protocol. Jpn J Cancer Res 87:329–331PubMedCrossRefGoogle Scholar
  47. 47.
    Hirose M, Abe-Hashimoto J, Ogura K, Tahara H, Ide T, Yoshimura T (1997) J Cancer Res Clin Oncol (in press)Google Scholar
  48. 48.
    Harle Bachor C, Boukamp P (1996) Telomerase activity in the regenerative basal layer of the epidermis in human skin and in immortal and carcinoma-derived skin keratinocytes. Proc Natl Acad Sci USA 93:6476–6481CrossRefGoogle Scholar
  49. 49.
    Counter CM, Gupta J, Harley CB, Leber B, Bacchetti S (1995) Telomerase activity in normal leukocytes and in hematologic malignancies. Blood 85:2315–2320PubMedGoogle Scholar
  50. 50.
    Yasumoto S, Kunimura C, Kikuchi K, Tahara H, Ohji H, Yamamoto H, Ide T, Utakoji T (1996) Telomerase activity in normal human epithelial cells. Oncogene 13:433–439PubMedGoogle Scholar
  51. 51.
    Hiyama K, Hirai Y, Kyoizumi S, Akiyama M, Hiyama E, Piatyszek MA, Shay JW, Ishioka S, Yamakido M (1995) Activation of telomerase in human lymphocytes and hematopoietic progenitor cells. J Immunol 155:3711–3715PubMedGoogle Scholar
  52. 52.
    Broccoli D, Young JW, de Lange T (1995) Telomerase activity in normal and malignant hematopoietic cells. Proc Natl Acad Sci USA 92: 9082–9086PubMedCrossRefGoogle Scholar
  53. 53.
    Pluta AF, Zakian VA (1989) Recombination occurs during telomere formation in yeast. Nature 337: 429–433PubMedCrossRefGoogle Scholar
  54. 54.
    Tahara H, Nakanishi T, Kitamoto M, Nakashio R, Shay JW, Tahara E, Kajiyama G, Ide T (1995) Telomerase activity in human liver tissues: comparison between chronic liver disease and hepatocellular carcinomas. Cancer Res 55:2734–2736PubMedGoogle Scholar
  55. 55.
    Nakashio R, Kitamoto M, Tahara H, Nakanishi T, Ide T, Kajiyama G (1997) Significance of telomerase activity in the diagnosis of small differentiated hepatocellular carcinoma. Int J Cancer (in press)Google Scholar
  56. 56.
    Nouso K, Urabe Y, Higashi T, Nakatsukasa H, Hino N, Ashida K, Kinugasa N, Yoshida K, Uematsu S, Tsuji T (1996) Telomerase as a tool for the differential diagnosis of human hepatocellular carcinoma. Cancer 78:232–236PubMedCrossRefGoogle Scholar
  57. 57.
    Hiyama E, Yokoyama T, Tatsumoto N, Hiyama K, Imamura Y, Murakami Y, Kodama T, Piatyszek MA, Shay JW, Matsuura Y (1995) Telomerase activity in gastric cancer. Cancer Res 55:3258–3262PubMedGoogle Scholar
  58. 58.
    Chadeneau C, Hay K, Hirte HW, Gallinger S, Bacchetti S (1995) Telomerase activity associated with acquisition of malignancy in human colorectal cancer. Cancer Res 55:2533–2536PubMedGoogle Scholar
  59. 59.
    Kuniyasu H, Domen T, Hamamoto T, Yokozaki H, Yasui W, Tahara H, Tahara E (1997) Expression of human telomerase RNA is an early event of stomach carcinogenesis. Jpn J Cancer Res 88:103–107PubMedCrossRefGoogle Scholar
  60. 60.
    Victoria L, Woodring W (1996) Telomeres and telomerase: a simple picture become complex. Cell 87:369–375CrossRefGoogle Scholar
  61. 61.
    Tahara E, Semba S, Tahara H (1996) Molecular biological observations in gastric cancer. Semin Oncol 23:307–315PubMedGoogle Scholar
  62. 62.
    Hiyama K, Hiyama E, Ishioka S, Yamakido M, Inai K, Gazdar AF, Piatyszek MA, Shay JW (1995) Telomerase activity in small-cell and non-small-cell lung cancers. J Natl Cancer Inst 87:895–902PubMedCrossRefGoogle Scholar
  63. 63.
    Schwartz HS, Juliao SF, Sciadini MF, Miller LK, Butler MG (1995) Telomerase activity and oncogenesis in giant cell tumor of bone. Cancer 75:1094–1099PubMedCrossRefGoogle Scholar
  64. 64.
    Hiyama E, Gollahon L, Kataoka T, Kuroi K, Yokoyama T, Gazdar AF, Hiyama K, Piatyszek MA, Shay JW (1996) Telomerase activity in human breast tumors. J Natl Cancer Inst 88:116–122PubMedCrossRefGoogle Scholar
  65. 65.
    Li ZH, Salovaara R, Aaltonen LA, Shibata D (1996) Telomerase activity is commonly detected in hereditary nonpolyposis colorectal cancers. Am J Pathol 148:1075–1079PubMedGoogle Scholar
  66. 66.
    Sommerfeld HJ, Meeker AK, Piatyszek MA, Bova GS, Shay JW, Coffey DS (1996) Telomerase activity: a prevalent marker of malignant human prostate tissue. Cancer Res 56:218–222PubMedGoogle Scholar
  67. 67.
    Yoshida K, Sugino T, Goodision S, Tahara H, Warren B, Nolan D, Wadsworth S, Mortensen N, Toge T, Tahara E, Tarin D (1997) Telomerase activity in exfoliated cells in colon luminal washings and its clinical application to non-invasive detection of colon cancer. Br J Cancer 75:548–553PubMedCrossRefGoogle Scholar
  68. 68.
    Yoshida K, Sugino T, Tahara H, Woodman A, Bolodeoku J, Nargand V, Fellows G, Goodision S, Tahara E, Tarin D (1996) Telomerase activity in bladder carcinomas and its implication for noninvasive diagnosis by detection of exfoliated cancer cells in urine. Cancer 79:362–369CrossRefGoogle Scholar
  69. 69.
    Sugino T, Yoshida K, Bolodeoku J, Tahara H, Buley I, Manek S, Wells C, Goodison S, Ide T, Suzuki T, Tahara E, Tarin D (1996) Telomerase activity in human breast cancer and benign breast lesions: diagnosis applications in clinical specimens including fine needle aspirates. Int J Cancer 69:301–306PubMedCrossRefGoogle Scholar
  70. 70.
    Ohmura H, Tahara H, Suzuki M, Ide T, Shimizu M, Yoshida MA, Tahara E, Shay JW, Barrett JC, Oshimura M (1995) Restoration of the cellular senescence program and repression of telomerase by human chromosome 3. Jpn J Cancer Res 86:899–904PubMedCrossRefGoogle Scholar
  71. 71.
    Norton JC, Piatyszek MA, Wright WE, Shay JW, Corey DR (1996) Inhibition of human telomerase activity by peptide nucleic acids. Nature Biotechnol 14:615–619CrossRefGoogle Scholar
  72. 72.
    Adamson DJ, King DJ, Haites NE (1992) Significant telomere shortening in childhood leukemia. Cancer Genet Cytogenet 61:204–206PubMedCrossRefGoogle Scholar
  73. 73.
    Hastie ND, Dempster M, Dunlop MG, Thompson AM, Green DK, Allshire RC (1990) Telomere reduction in human colorectal carcinoma and with ageing. Nature 346:866–868PubMedCrossRefGoogle Scholar
  74. 74.
    Mehle C, Ljungberg B, Roos G (1994) Telomere shortening in renal cell carcinoma. Cancer Res 54:236–241PubMedGoogle Scholar
  75. 75.
    Ohashi K, Tsutsumi M, Kobitsu K, Fukuda T, Tsujiuchi T, Okajima E, Ko S, Nakajima Y, Nakano H, Konishi Y (1996) Shortened telomere length in hepatocellular carcinomas and corresponding background liver tissues of patients infection with hepatitis virus. Jpn J Cancer Res 87:419–422PubMedCrossRefGoogle Scholar
  76. 76.
    Ohyashiki K, Ohyashiki JH, Fujimura T, Kawakubo K, Shimamoto T, Saito M, Nakazawa S, Toyama K (1994) Telomere shortening in leukemic cells is related to their genetic alterations but not replicative capability. Cancer Genet Cytogenet 78:64–67PubMedCrossRefGoogle Scholar
  77. 77.
    Rogalla P, Kazmierczak B, Rohen C, Trams G, Bartnitzke S, Bullerdiek J (1994) Two human breast cancer cell lines showing decreasing telomeric repeat length during early in vitro passaging. Cancer Genet Cytogenet 77:19–25PubMedCrossRefGoogle Scholar
  78. 78.
    Smith JK, Yeh G (1992) Telomere reduction in endometrial adenocarcinoma. Am J Obstet Gynecol 167:1883–1887PubMedCrossRefGoogle Scholar
  79. 79.
    Yu GL, Bradley JD, Attardi LD, Blackburn EH (1990) In vivo alteration of telomere sequences and senescence caused by mutated Tetrahymena telomerase RNAs. Nautre 344:126–132CrossRefGoogle Scholar
  80. 80.
    Ramirez RD, Wright WE, Shay JW, Taylor RS (1997) Telomerase activity concentrates in the mitotically active segments of human hair follicles. J Invest Dermatol 108:113–117PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 1997

Authors and Affiliations

  • Hidetoshi Tahara
    • 1
  • Eiji Tahara
    • 1
  • Eiichi Tahara
    • 2
  • Toshinori Ide
    • 1
  1. 1.Department of Cellular and Molecular BiologyHiroshima University School of MedicineMinami-ku, Hiroshima 734Japan
  2. 2.First Department of PathologyHiroshima University School of MedicineMinami-ku, Hiroshima 734Japan

Personalised recommendations