Consideration of Intraoperative Brain Shift for Frameless Stereotaxy

  • Hiroshi Okudera
  • Shigeaki Kobayashi
  • Hisashi Nagashima
  • Toru Koyama
  • Susumu Oikawa
Conference paper


Brain shift during open neurosurgery is a major factor causing errors in intraoperative neuronavigation based on preoperative neuroradiological images. Under the observation of intraoperative CT images provided by the operating CT scanner system in Shinshu University Hospital, the causes of intraoperative brain shift were analyzed. As direct surgical factors of intraoperative brain shift, decompressive effects by craniotomy, dural opening, and suction of cerebrospinal fluid may play a significant role on intraoperative shift. Also, surgical procedures including brain retraction and dissection significantly affect intraoperative CT findings. Furthermore, changes of brain volume by administration of anesthetic and osmotic agents and intraoperative management of respiration and blood pressure may be important indirect factors in intraoperative brain shift affecting neuronavigation.

Key words

Navigation Image-guided surgery (IGS) Computer-assisted surgery Frameless stereotaxy Intraoperative CT scanning Brain shift Open neurosurgery 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Watanabe E, Mayanagi Y, Kosugi Y, et al (1991) Open surgery assisted by the neuro-navigator, a stereotactic, articulated, sensitive arm. Neurosurgery 28: 792–799PubMedCrossRefGoogle Scholar
  2. 2.
    Roberts DW, Strohbehn JW, Hatch JF, et al (1986) A frameless stereotaxic integration of computerized tomographic imaging and the operating microscope. J Neurosurg 65: 545–549PubMedCrossRefGoogle Scholar
  3. 3.
    Watanabe E, Watanabe T, Manaka S, et al (1987) Three-dimensional digitizer (neuro-navigator): new equipment for computed tomography-guided stereotaxic surgery. Surg Neurol 27: 543–547PubMedCrossRefGoogle Scholar
  4. 4.
    Kato A, Yoshimine T, Hayakawa T, et al (1991) A frameless, armless navigational system for computer-assisted neurosurgery. Technical note. J Neurosurg 74: 845–849Google Scholar
  5. 5.
    Zamorano L, Jiang Z, Kadi AM (1994) Computer-assisted neurosurgery system: Wayne State University hardware and software configuration. Comput Med Imaging Graphics 18: 257–271CrossRefGoogle Scholar
  6. 6.
    Okudera H, Kobayashi S, Sugita K (1989) Mobile CT scanner gantry for use in the operating room. AJNR (Am J Neuroradiol) 12: 131–132Google Scholar
  7. 7.
    Okudera H, Kobayashi S, Kyoshima K, et al (1991) Development of the operating computerized tomographic scanner system for neurosurgery. Acta Neurochir (Wien) 111: 61–63CrossRefGoogle Scholar
  8. 8.
    Okudera H, Kyoshima K, Kobayashi S, et al (1994) Intraoperative CT scan findings during resection of glial tumours. Neurol Res 16: 265–267PubMedGoogle Scholar
  9. 9.
    Okudera H, Kobayashi S, Sugita K (1989) Computer-assisted three-dimensional surgical guide system using a laser guide arm based on intraoperative computerized tomography. In: Brock M, Banerji AK, Sambasivan M (eds) Modern neurosurgery, vol 2. WFNS (World Federation of Neurosurgical Societies), Trivandrum, pp 471–477Google Scholar
  10. 10.
    Okudera H, Kobayashi S, Kanemaru K, et al (1990) Digitally controlled neurosurgical operating table. Technical note. Neurol Med Chir (Tokyo) 30: 201–203CrossRefGoogle Scholar
  11. 11.
    Okudera H, Kobayashi S, Kyoshima K, et al (1992) Modified head fixation system for intraoperative CT scanning. Technical note. Neurol Med Chir (Tokyo) 32: 38–39CrossRefGoogle Scholar
  12. 12.
    Okudera H, Kobayashi S, Kyoshima K, et al (1994) New radiolucent head fixation made of engineering plastics for intraoperative CT scanning. Acta Neurochir (Wien) 127: 121–123CrossRefGoogle Scholar
  13. 13.
    Harada T, Okudera H, Kobayashi S, et al (1991) [Computerized tomography immediately after surgery in the neurosurgical operating theater] (in Japanese). Neurol Surg 19: 415–419CrossRefGoogle Scholar
  14. 14.
    Reinhardt HF, Horstmann GA, Gratzl O (1993) Sonic stereometry in microsurgical procedures for deep-seated brain tumors and vascular malformations. Neurosurgery 32: 51–57PubMedCrossRefGoogle Scholar
  15. 15.
    Barnett GH, Kormos DW, Steiner CP, et al (1993) Intraoperative localization using an armless, frameless stereotactic wand. Technical note. J Neurosurg 78: 510–514Google Scholar
  16. 16.
    Takizawa T (1993) Isocentric stereotactic three-dimensional digitizer for neurosurgery. Stereotactic Funct Neurosurg 60: 175–193CrossRefGoogle Scholar
  17. 17.
    Tan KK, Grzeszczuk R, Levin DN, et al (1993) A frameless stereotactic approach to neurosurgical planning based on retrospective patient-image registration. Technical note. J Neurosurg 79: 296–303CrossRefGoogle Scholar
  18. 18.
    Barnett GH, Kormos DW, Steiner CP, et al (1993) Use of a frameless, armless stereotactic wand for brain tumor localization with two-dimensional and three-dimensional neuroimaging. Neurosurgery 33: 674–678PubMedCrossRefGoogle Scholar
  19. 19.
    Smith KR, Frank KJ, Bucholz RD (1994) The NeuroStation—a highly accurate, minimally invasive solution to frameless stereotactic neurosurgery. Comput Med Imaging Graphic 18: 247–256CrossRefGoogle Scholar
  20. 20.
    Sandeman DR, Patel N, Chandler C, et al (1994) Advances in image-directed neurosurgery: preliminary experience with the ISG Viewing Wand compared with the Leksell G frame. Br J Neurosurg 8: 529–544PubMedCrossRefGoogle Scholar
  21. 21.
    Golfinos JG, Fitzpatrick BC, Smith LR, et al (1995) Clinical use of a frameless stereotactic arm: results of 325 cases. J Neurosurg 83: 197–205PubMedCrossRefGoogle Scholar
  22. 22.
    Kondziolka D, Lunsford LD (1996) Intraoperative navigation during resection of brain metastases. Neurosurg Clin North Am 7: 267–277Google Scholar
  23. 23.
    Zinreich SJ, Tebo SA, Long DM, et al (1993) Frameless stereotaxic integration of CT imaging data: accuracy and initial applications. Radiology 188: 735–742PubMedGoogle Scholar
  24. 24.
    Kitchen ND, Lemieux L, Thomas DG (1993) Accuracy in frame-based and frameless stereotaxy. Stereotactic Funct Neurosurg 61: 195–206CrossRefGoogle Scholar
  25. 25.
    Sipos EP, Tebo SA, Zinreich SJ, et al (1996) In vivo accuracy testing and clinical experience with the ISG Viewing. Neurosurgery 39: 194–202PubMedCrossRefGoogle Scholar
  26. 26.
    Nauta HJ (1994) Error assessment during “image guided” and “imaging interactive” stereo-tactic surgery. Comput Med Imaging Graphics 18: 279–287CrossRefGoogle Scholar
  27. 27.
    Ryan MJ, Erickson RK, Levin DN, et al (1996) Frameless stereotaxy with real-time tracking of patient head movement and retrospective patient-image registration. J Neurosurg 85: 287–292PubMedCrossRefGoogle Scholar
  28. 28.
    Okudera H, Takemae T, Kobayashi S (1993) Intraoperative computed tomographic scanning during transsphenoidal surgery. Technical note. Neurosurgery 32: 1041–1043Google Scholar
  29. 29.
    Brodwater BK, Roberts DW, Nakajima T, et al (1993) Extracranial application of the frameless stereotactic operating microscope: experience with lumbar spine. Neurosurgery 32: 209–213PubMedCrossRefGoogle Scholar
  30. 30.
    Kalfas IH, Kormos DW, Murphy MA, et al (1995) Application of frameless stereotaxy to pedicle screw fixation of the spine. J Neurosurg 83: 641–647PubMedCrossRefGoogle Scholar
  31. 31.
    Glossop ND, Hu RW, Randle JA (1996) Computer-aided pedicle screw placement using frameless stereotaxis. Spine 21: 2026–2034PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1997

Authors and Affiliations

  • Hiroshi Okudera
    • 1
  • Shigeaki Kobayashi
    • 1
  • Hisashi Nagashima
    • 1
  • Toru Koyama
    • 1
  • Susumu Oikawa
    • 1
  1. 1.Department of NeurosurgeryShinshu University School of MedicineMatsumoto, Nagano 390Japan

Personalised recommendations