Skip to main content

Molecular Dissection of Regulatory Light Chain Function in Vertebrate Smooth Muscle Myosins

  • Conference paper
Regulation of the Contractile Cycle in Smooth Muscle

Summary

The recent elucidation of the crystal structures of the myosin head and regulatory domain allows us to analyze the changes in myosin structure that occur during regulation. The light chains are the regulatory subunits and are bound to the α-helical segment of the heavy chain (regulatory domain), which extends from the motor domain (containing the ATPase and actin-binding sites) to the head-tail junction. We have used a recombinant DNA approach to investigate how the light chains in this location regulate the motor domain. To identify the subdomains/regions important for regulatory function, we have synthesized a series of mutant regulatory light chains (RLCs) and characterized them by their ability to restore Ca2+ regulation to the desensitized scallop myosin test system. Assays on chimeric RLCs composed of subdomains derived from vertebrate smooth muscle and skeletal muscle myosin RLCs demonstrate that the origin of the third subdomain specifies the regulatory capability of the RLC. A series of smooth muscle myosin RLC mutants with deletions in the fourth subdomain show that the C-terminal helix in this subdomain is essential for regulation. Although the skeletal and scallop RLCs need an intact Ca2+/Mg2+-binding site in the first subdomain for function, the smooth muscle RLC behaves differently and does not require divalent metal binding to this site for regulation. These studies demonstrate the regions of the RLC that are important for regulatory function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Winkelmann DA, Lowey S (1986) Probing myosin head structure with monoclonal antibodies. J Mol Biol 188: 595–612

    Article  PubMed  CAS  Google Scholar 

  2. Katoh T, Lowey S (1987) Mapping myosin light chains by immunoelectron microscopy: use of anti-fluorescyl antibodies as structural probes. J Cell Biol 109: 1549–1560

    Article  Google Scholar 

  3. Adelstein RS, Eisenberg E (1980) Regulation and kinetics of the actin-myosin-ATP interaction. Annu Rev Biochem 49: 921–956

    Article  PubMed  CAS  Google Scholar 

  4. Hartshorne DJ, Gorecka A (1980) The biochemistry of the contractile proteins of smooth muscle. In: Bohr DF, et al. (eds) Handbook of physiology. American Physiological Society, Bethesda, pp 93–120

    Google Scholar 

  5. Small JV, Sobieszek A (1980) The contractile apparatus of smooth muscle. Int Rev Cytol 64: 241306

    Google Scholar 

  6. Trybus KM, Huiatt TW, Lowey S (1982) A bent monomeric conformation of myosin from smooth muscle. Proc Natl Acad Sci USA 79: 6151–6155

    Article  PubMed  CAS  Google Scholar 

  7. Onishi H, Wakabayashi T (1982) Electron microscopic studies of myosin from chicken gizzard muscle: the formation of the intramolecular loop in the myosin tail. J Biol Chem 92: 871–879

    CAS  Google Scholar 

  8. Craig R, Smith R, Kendrick-Jones J (1983) Light-chain phosphorylation controls the confor mation of vertebrate non-muscle and smooth muscle myosin molecules. Nature 302: 436–439

    Article  PubMed  CAS  Google Scholar 

  9. Cross RA, Cross KE, Sobieszek A (1986) ATP-linked monomer-polymer equilibrium of smooth muscle myosin: the free folded monomer traps ADPPi. EMBO J 5: 2637–2641

    PubMed  CAS  Google Scholar 

  10. Cross RA, Jackson AP, Citi S, Kendrick-Jones J, Bagshaw CR (1988) Active site trapping of nucleotide by smooth and non-muscle myosins. J Mol Biol 203: 173–181

    Article  PubMed  CAS  Google Scholar 

  11. Somly AV, Butler TM, Bond M, Somlyo AP (1981) Myosin filaments have non-phosphorylated light chains in relaxed smooth muscle. Nature 294: 567–569

    Article  Google Scholar 

  12. Karess RE, Chang XJ, Edwards KA, Kulkarni S, Aguilera I, Kiehart DP (1991) The regulatory light chain of nonmuscle myosin is encoded by spaghetti-squash, a gene required for cytokinesis in Drosophila. Cell 65: 1177–1189

    Article  PubMed  CAS  Google Scholar 

  13. Kretsinger RH (1980) Structure and evolution of the calcium-modulated proteins. CRC Crit Rev Biochem 8: 119–174

    Article  PubMed  CAS  Google Scholar 

  14. Strynadka NCJ, James MNG (1989) Crystal structures of the helix-loop-helix calcium-binding proteins. Annu Rev Biochem 58: 951–998

    Article  PubMed  CAS  Google Scholar 

  15. Collins JH (1976) Homology of myosin DTNB light chain with alkali light chains, troponin C and parvalbumin. Nature 259: 699–700

    Article  PubMed  CAS  Google Scholar 

  16. Kendrick-Jones J, Jakes R (1976) Myosin-linked regulation: a chemical approach. In: Ricker G, Weber A, Goodwin J (eds) Myocardial failure: international Boehringer symposium, Munich. Springer-Verlag, Heidelberg New York Tokyo Berlin, pp 28–40

    Google Scholar 

  17. Reinach FC, Nagai K, Kendrick-Jones J (1986) Site-directed mutagenesis of the regulatory light-chain Ca21 /Mg2’ binding site and its role in hybrid myosins. Nature 322: 80–83

    Article  PubMed  CAS  Google Scholar 

  18. Goodwin EB, Leinwand LA, Szent-Györgyi AG (1990) Regulation of scallop myosin by mutant regulatory light chains. J Mol Biol 216: 85–93

    Article  PubMed  CAS  Google Scholar 

  19. Kwon H, Goodwin EB, Nyitray L, Berliner E, O’Neall-Hennessey E, Melandri FD, Szent-Györgyi AG (1990) Isolation of the regulatory domain of scallop myosin: role of the essential light chain in calcium binding. Proc Natl Acad Sci USA 87: 4771–4775

    Article  PubMed  CAS  Google Scholar 

  20. Kwon H, Melandri FD, Szent-Györgyi AG (1992) Role of gizzard myosin light chains in calcium binding. J Muscle Res Cell Motil 13: 315–320

    Article  PubMed  CAS  Google Scholar 

  21. Rayment I, Rypniewski WR, Schmidt-Base K, Smith R, Tomchick DR, Benning MM, Winkelmann DA, Wesenberg G, Holden HM (1993) Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261: 50–58

    Article  PubMed  CAS  Google Scholar 

  22. Xie X, Harrison DH, Schlichting I, Sweet RM, Kalabokis VN, Szent-Györgyi AG, Cohen C (1994) Structure of the regulatory domain of scallop myosin at 2.8A resolution. Nature 368: 306–312

    Article  PubMed  CAS  Google Scholar 

  23. Persechini A, Stull JT, Cooke R (1985) The effect of myosin phosphorylation on the contractile properties of skinned rabbit skeletal muscle fibres. Proc Natl Acad Sci USA 260: 7951–7954

    CAS  Google Scholar 

  24. Ikura M, Clore GM, Gronenborn AM, Zhu G, Klee CB, Bax A (1992) Solution structure of a calmodulin-target peptide complex of multidimensional NMR. Science 256: 632–638

    Article  PubMed  CAS  Google Scholar 

  25. Way M, Pope B, Gooch J, Hawkins MG, Weeds AG (1990) Identification of a region in segment 1 of gelsolin critical for actin binding. EMBO J 9: 4103–4109

    PubMed  CAS  Google Scholar 

  26. Rowe T, Kendrick-Jones J (1992) Chimeric myosin regulatory light chains identify the subdomain responsible for regulatory function. EMBO J 11: 4715–4722

    PubMed  CAS  Google Scholar 

  27. Kendrick-Jones J, Rasera da Silva AC, Reinach FC, Messer NG, Rowe T, McLaughlin PJ (1991) Recombinant DNA approaches to study the role of the regulatory light chains ( RLC) using scallop myosin as a test system. J Cell Sci S14: 55–58

    Google Scholar 

  28. Szent-Györgyi AG, Szentkiralyi EM, Kendrick-Jones J (1973) The light chains of scallop myosin as regulatory subunits. J Mol Biol 73: 170–203

    Google Scholar 

  29. Kendrick-Jones J, Scholey JM (1981) Myosin-linked regulatory systems. J Muscle Res Cell Motil 2: 347–372

    Article  CAS  Google Scholar 

  30. Sellers JR, Chantler PD, Szent-Györgyi AG (1980) Hybrid formation between scallp myofibrils and foreign regulatory light-chains. J Mol Biol 144: 223–245

    Article  PubMed  CAS  Google Scholar 

  31. Kendrick-Jones J, Jakes R, Tooth P, Craig R, Scholey JM (1982) Role of the myosin light chains in the regulation of contractile activity. In: Twarog BM, Levine RJC, Dewey MM (eds) Basic biology of muscles: a comparative approach. Raven Press, New York, pp 255–272

    Google Scholar 

  32. Ankrett RJ, Rowe AJ, Cross RA, Kendrick-Jones J, Bagshaw CR (1991) A folded (10S) conformer of myosin from a striated muscle and its implications for regulation of ATPase activity. J Mol Biol 217: 323–335

    Article  PubMed  CAS  Google Scholar 

  33. Stafford WF, Szentkiralyi EM, Szent-Györgyi AG (1979) Regulatory properties of single-headed fragments of scallop myosin. Biochemistry 24: 5273–5280

    Article  Google Scholar 

  34. Seidel JC (1980) Fragmentation of gizzard myosin by a-chymotrypsin and papain, the effects on ATPase activity, and the interaction with actin. J Biol Chem 255: 4355–4361

    PubMed  CAS  Google Scholar 

  35. Morita JI, Takashi R, Ikebe M (1991) Exchange of the fluorescence-labelled 20,000-dalton light chain of smooth muscle myosin. Biochemistry 30: 9539–9545

    Article  PubMed  CAS  Google Scholar 

  36. Trybus KM, Chatman TA (1993) Chimaeric regulatory light chains as probes of smooth muscle myosin function. J Biol Chem 268: 4412–4419

    PubMed  CAS  Google Scholar 

  37. Chantler PD, Szent-Györgyi AG (1980) Regulatory light-chains and scallop myosin: full dissociation, reversibility and co-operative effects. J Mol Biol 138: 473–492

    Article  PubMed  CAS  Google Scholar 

  38. Herzberg O, James MNG (1988) Refined crystal structure of troponin C from turkey skeletal muscle at 2.011 resolution. J Mol Biol 203: 761–779

    Article  PubMed  CAS  Google Scholar 

  39. Rowe T, Kendrick-Jones J (1993) The C-terminal helix in subdomain 4 of the regulatory light chain is essential for myosin regulation. EMBO J 12: 4877–4884

    PubMed  CAS  Google Scholar 

  40. Collins JH (1991) Myosin light chains and troponin C: structural and evolutionary relationships revealed by amino acid sequence comparisons. J Muscle Res Cell Motil 12: 3–25

    Article  PubMed  CAS  Google Scholar 

  41. Bagshaw CR, Kendrick-Jones J (1979) Characterization of homologous divalent metal ion binding sites of vertebrate and molluscan myosins using electron paramagnetic resonance spectroscopy. J Mol Biol 130: 317–336

    Article  PubMed  CAS  Google Scholar 

  42. Bagshaw CR, Kendrick-Jones J (1980) Identification of the divalent metal binding domain of myosin regulatory light chains using spin-labelling techniques. J Mold Biol 140: 411–433

    Article  CAS  Google Scholar 

  43. Bagshaw CR, Reed GH (1977) The significance of the slow dissociation of divalent metal ions from myosin regulatory light chains. FEBS Lett 81: 386–390

    Article  PubMed  CAS  Google Scholar 

  44. Da Silva ACR, De Araujo AHB, Hertzberg O, Moult J, Sorenson M, Reinach FC (1993) Troponin C mutants with increased calcium affinity. Eur J Biochem 213: 599–604

    Article  PubMed  Google Scholar 

  45. Kraulis PJ (1991) MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J Appl Cryst 24: 946–950

    Article  Google Scholar 

  46. Jung G, Korn ED, Hammer JA (1987) The heavy chain of Acanthamoeba myosin IB is a fusion of myosin-like and nonmyosin-like sequences. Proc Natl Acad Sci USA 84: 6720–6724

    Article  PubMed  CAS  Google Scholar 

  47. Hammer JA, Bowers B, Paterson BM, Korn ED (1987) Complete nucleotide sequence and deduced polypeptide sequence of a non-muscle myosin heavy chain gene from Acanthamoeba: evidence for a hinge in a rod-like tail. J Cell Biol 105: 913–925

    Article  PubMed  CAS  Google Scholar 

  48. Warrick HM, De Lozanne A, Leinwand LA, Spudich JA (1986) Conserved protein domains in a myosin heavy chain from Dictyostelium discoideum. Proc Natl Acad Sci USA 83: 94339437

    Google Scholar 

  49. Kant J, Brenner S, Barnett L (1983) Protein structural domains in the Caenorhabditis elegans unc54 myosin heavy chain gene are not separated by introns. Proc Natl Acad Sci USA 80: 4253–4257

    Article  Google Scholar 

  50. Kraft R, Bravo-Zehnder M, Taylor DA, Leinwand LA (1989) Complete nucleotide sequence of full lenght cDNA for rat (3 cardiac myosin heavy chain. Nucleic Acids Res 17: 7529–7530

    Article  PubMed  CAS  Google Scholar 

  51. Molina MI, Kropp KE, Gulick J, Robbins J (1987) The sequence of an embryonic myosin heavy chain gene and isolation of its corresponding cDNA. J Biol Chem 262: 6478–6488

    PubMed  CAS  Google Scholar 

  52. Nyitray L, Goodwin EB, Szent-Györgyi AG (1991) Complete primary structure of a scallop striated muscle myosin heavy chain. J Biol Chem 266: 18469–18476

    PubMed  CAS  Google Scholar 

  53. Yanagisawa M, Hamada Y, Katsuragawa Y, Imamura M, Mikawa T, Masaki T (1987) Complete primary structure of vertebrate smooth muscle myosin heavy chain deduced from its complementary DNA sequence. J Mol Biol 198: 143–157

    Article  PubMed  CAS  Google Scholar 

  54. McLachlan AD, Kam J (1982) Periodic charge distribution in the myosin rod amino acids sequence match cross bridge spacings in muscle. Nature 299: 226–231

    Article  PubMed  CAS  Google Scholar 

  55. Cheney RE, Mooseker MS (1992) Unconventional myosins. Curr Opin Cell Biol 4: 27–35

    Article  PubMed  CAS  Google Scholar 

  56. Sellers JR, Harvey EV (1984) Localization of a light chain binding site on smooth muscle myosin by light chain overlay of sodium dodecyl sulfate polyacrylamide electrophoretic gels. J Biol Chem 259: 14203–14207

    PubMed  CAS  Google Scholar 

  57. Mitchell EJ, Jakes R, Kendrick-Jones J (1986) Localisation of light chain and actin binding sites on myosin. Eur J Biochem 161: 25–35

    Article  PubMed  CAS  Google Scholar 

  58. Waller GS, Lowey S (1985) Myosin subunit interactions: localization of the alkali light chains. J Biol Chem 260: 14368–14373

    PubMed  CAS  Google Scholar 

  59. McNally EM, Bravo-Zehnder MM, Leinwand LA (1991) Identification of sequences necessary for the association of cardiac myosin subunits. J Cell Biol 113: 585–590

    Article  PubMed  CAS  Google Scholar 

  60. Wells JA, Yount RG (1979) Active site trapping of nucleotides by crosslinking two sulfhydryls in myosin subfragment 1. Proc Natl Acad Sci USA 76: 4966–4970

    Article  PubMed  CAS  Google Scholar 

  61. Wells JA, Knoeber C, Sheldon MC, Werber MM, Yount RG (1980) Crosslinking of myosin 51. J Biol Chem 255: 11135–11140

    PubMed  CAS  Google Scholar 

  62. Rayment I, Holden HM, Whittaker M, Yohn CB, Lorenz M, Holmes KC, Milligan RA (1993) Structure of the actin-myosin complex and its implications for muscle contraction. Science 261: 58–65

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Tokyo

About this paper

Cite this paper

Kendrick-Jones, J., Rowe, T., Rasera da Silva, A.C., Reinach, F.C. (1995). Molecular Dissection of Regulatory Light Chain Function in Vertebrate Smooth Muscle Myosins. In: Nakano, T., Hartshorne, D.J. (eds) Regulation of the Contractile Cycle in Smooth Muscle. Springer, Tokyo. https://doi.org/10.1007/978-4-431-65880-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-65880-1_7

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-65882-5

  • Online ISBN: 978-4-431-65880-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics