Skip to main content

Pharmacomechanical Coupling Through Regulation of Myosin Light Chain Phosphatase

  • Conference paper
Regulation of the Contractile Cycle in Smooth Muscle

Summary

The two major components of pharmacomechanical coupling, inositol 1,4,5-trisphosphate-induced Ca2+ release and modulation of Ca2+ sensitivity, are described. Desensitization of phasic smooth muscles to Ca2+ is demonstrated through time-dependent divergence, during relaxation, between the level of Ca2+ and the decline in MLC20 phosphorylation and force. Possible mechanisms of desensitization include down-regulation of myosin light chain kinase and up-regulation of myosin light chain phosphatase. Sensitization to Caz’ is shown to be mediated by a G protein-coupled system that inhibits the (type 1) protein phosphatase responsible for dephosphorylation of the regulatory smooth muscle myosin light chain (MLC20). The diacylglycerol/kinase C system and arachidonic acid are identified as potential messengers mediating the inhibition of MLC20 phosphatase. The inhibitory effects of arachidonic acid on myosin light chain phosphatase, through dissociation of the catalytic from the targeting subunits, are illustrated, and studies showing the inhibition of voltage-gated Ca“ current by arachidonic acid are summarized. It is suggested that G protein-coupled protein phosphatase inhibition plays a significant role in the regulation of nonmuscle functions in which phosphorylation and dephosphorylation of nonmuscle myosins have functionally important effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Somlyo AV, Somlyo AP (1968) Electromechanical and pharmacomechanical coupling in vascular smooth muscle. J Pharmacol Exp Ther 159: 129–145

    PubMed  CAS  Google Scholar 

  2. Suematsu E, Hirata M, Hashimoto T, Kuriyama H (1984) Inositol 1,4,5-trisphosphate releases Ca“ from intracellular store sites in skinned single cells of porcine coronary artery. Biochem Biophys Res Commun 120: 481–485

    Article  PubMed  CAS  Google Scholar 

  3. Somlyo AV, Bond M, Somlyo AP, Scarpa A (1985) Inositol-trisphosphate (InsP3) induced calcium release and contraction in vascular smooth muscle. Proc Natl Acad Sci USA 82: 5231–5235

    Article  PubMed  CAS  Google Scholar 

  4. Kobayashi S, Somlyo AP, Somlyo AV (1988) Guanine nucleotide and inositol 1,4,5-trisphosphateinduced calcium release in rabbit main pulmonary artery. J Physiol (Lond) 403: 601–619

    CAS  Google Scholar 

  5. Kobayashi S, Somlyo AV, Somlyo AP (1988) Heparin inhibits the inositol 1,4,5-trisphosphatedependent, but not the independent, calcium release induced by guanine nucleotide in vascular smooth muscle. Biochem Biophys Res Commun 153: 625–631

    Article  PubMed  CAS  Google Scholar 

  6. Miller-Hance WC, Miller JR, Wells JN, Stull JT, Kamm KE (1988) Biochemical events associated with activation of smooth muscle contraction. J Biol Chem 263: 13979–13982

    PubMed  CAS  Google Scholar 

  7. Kobayashi S, Kitazawa T, Somlyo AV, Somlyo AP (1989) Cytosolic heparin inhibits muscarinic and adrenergic Caz’ release in smooth muscle. J Biol Chem 264: 17997–18004

    PubMed  CAS  Google Scholar 

  8. Somlyo AV, Horiuti K, Trentham DR, Kitazawa T, Somlyo AP (1992) Kinetics of Ca“-release and contraction induced by photolysis of caged o-myo-inositol 1,4,5-trisphosphate in smooth muscle: the effects of heparin, procaine and adenine nucleotides. J Biol Chem 267: 22316–22322

    PubMed  CAS  Google Scholar 

  9. Somlyo AP, Walker JW, Goldman TE, Trentham DR, Kobayashi S, Kitazawa T, Somlyo AV (1988) Inositol trisphosphate, calcium and muscle contraction. Philos Trans R Soc Lond [Biol] 320: 399–414

    Article  CAS  Google Scholar 

  10. Somlyo AP, Somlyo AV (1990) Flash photolysis studies of excitation-contraction coupling, regulation, and contraction in smooth muscle. Annu Rev Physiol 52: 857–874

    Article  PubMed  CAS  Google Scholar 

  11. Hartshorne DJ (1987) Biochemistry of the contractile process in smooth muscle. In: Johnson LR (ed) Physiology of the gastrointestinal tract, 2nd edn. Raven, New York, pp 423–482

    Google Scholar 

  12. Somlyo AP, Kitazawa T, Himpens B, Matthijs G, Horiuti K, Kobayashi S, Goldman YE, Somlyo AV (1989) Modulation of Cat • -sensitivity and of the time course of contraction in smooth muscle: a major role of protein phosphatases? Adv Protein Phosphatases 5: 181–195

    CAS  Google Scholar 

  13. Nishiye E, Somlyo AV, Török K, Somlyo AP (1993) The effects of MgADP on cross-bridge kinetics: a laser flash photolysis study of guinea-pig smooth muscle. J Physiol (Lond) 460: 247–271

    CAS  Google Scholar 

  14. Fuglsang A, Khromov A, Török K, Somlyo AV, Somlyo AP (1993) Flash photolysis studies of relaxation and cross-bridge detachment: higher sensitivity of tonic than phasic smooth muscle to MgADP. J Muscle Res Cell Motil 15: 666–673

    Article  Google Scholar 

  15. Khromov A, Somlyo AV, Somlyo AP (1994) The differential effect of MgADP on relaxation from isometric contraction by photolysis of Diazo 2 in tonic and phasic smooth muscle. Biophys J 66: A411

    Google Scholar 

  16. Himpens B, Matthijs G, Somlyo AV, Butler TM, Somlyo AP (1988) Cytoplasmic free calcium, myosin light chain phosphorylation, and force in phasic and tonic smooth muscle. J Gen Physiol 92: 712–729

    Article  Google Scholar 

  17. Himpens B, Matthijs G, Somlyo AP (1989) Desensitization to cytoplasmic Cat+ and Cat“-sensitivities of guinea-pig ileum and rabbit pulmonary artery smooth muscle. J Physiol (Lond) 413: 489–503

    CAS  Google Scholar 

  18. Kitazawa T, Somlyo AP (1990) Desensitization and muscarinic re-sensitization of force and myosin light chain phosphorylation to cytoplasmic Ca21 in smooth muscle. Biochem Biophys Res Commun 172: 1291–1297

    Article  PubMed  CAS  Google Scholar 

  19. Lydrup ML, Himpens B, Droogmans C, Hellstrand P, Somlyo AP (1992) Paradoxical decrease in cytosolic calcium with increasing depolarization by potassium in guinea-pig mesotubarium smooth muscle. Pflugers Arch 420: 428–433

    Article  PubMed  CAS  Google Scholar 

  20. Adelstein RS, Conti MA, Hathaway DR (1978) Phosphorylation of smooth muscle myosin light chain kinase by the catalytic subunit of adenosine 3’:5’-monophosphate-dependent protein kinase. J Biol Chem 253: 8347–8350

    PubMed  CAS  Google Scholar 

  21. Stull JT, Hsu L-C, Tansey MG, Kamm KE (1990) Myosin light chain kinase phosphorylation in tracheal smooth muscle. J Biol Chem 265: 16683–16690

    PubMed  CAS  Google Scholar 

  22. Tansey MG, Luby-Phelps K, Kamm KE, Stull JT (1994) Cat -dependent phosphorylation of myosin light chain kinase decreases the Ca2i -sensitivity of light chain phosphorylation within smooth muscle cells. J Biol Chem 269: 9912–9920

    PubMed  CAS  Google Scholar 

  23. Nishikawa M, de Lanerolle P, Lincoln TM, Adelstein RS (1984) Phosphorylation of mammalian myosin light chain kinases by the catalytic subunit of cyclic AMP-dependent protein kinase and by cyclic GMP-dependent protein kinase. J Biol Chem 259: 8429–8436

    PubMed  CAS  Google Scholar 

  24. Pfitzer G, Hofmann F, DiSalvo J, Rüegg JC (1984) cGMP and cAMP inhibit tension development in skinned coronary arteries. Pflugers Arch 401: 277–280

    Google Scholar 

  25. Tulloch AG, Pato MD (1991) Turkey gizzard smooth muscle myosin phosphatase-III is a novel protein phosphatase. J Biol Chem 266: 20168–20174

    PubMed  CAS  Google Scholar 

  26. Alessi D, MacDougall LK, Sola MM, Ikebe M, Cohen P (1992) The control of protein phosphatase1 by targeting subunits: the major myosin phosphatase in avian smooth muscle is a novel form of protein phosphatase-1. Eur J Biochem 210: 1023–1035

    Article  PubMed  CAS  Google Scholar 

  27. Gong MC, Cohen P, Kitazawa T, Ikebe M, Masuo M, Somlyo AP, Somlyo AV (1992) Myosin light chain phosphatase activities and the effects of phosphatase inhibitors in tonic and phasic smooth muscle. J Biol Chem 267: 14662–14668

    PubMed  CAS  Google Scholar 

  28. Mitsui T, Inagaki M, Ikebe M (1992) Purification and characterization of smooth muscle myosin-associated phosphatase from chicken gizzards. J Biol Chem 267: 16727–16735

    PubMed  CAS  Google Scholar 

  29. Okubo S, Erdödi F, Ito M, Ichikawa K, Konishi T, Nakano T, Kawamura T, Brautigan DL, Hartshorne DJ (1993) Characterization of a myosin-bound phosphatase from smooth muscle. Adv Protein Phosphatases 7: 295–314

    CAS  Google Scholar 

  30. Bradley AB, Morgan KG (1987) Alterations in cytoplasmic calcium sensitivity during porcine coronary artery contractions as detected by aequorin. J Physiol (Lond) 385: 437–448

    CAS  Google Scholar 

  31. Himpens B, Kitazawa T, Somlyo AP (1990) Agonist dependent modulation of Ca“ -sensitivity in rabbit pulmonary artery smooth muscle. Pflugers Arch 417: 21–28

    Article  PubMed  CAS  Google Scholar 

  32. Rembold CM, Murphy RA (1988) Myoplasmic [Ca2+] determines myosin phosphorylation in agonist-stimulated swine arterial smooth muscle. Circ Res 63: 593

    Article  PubMed  CAS  Google Scholar 

  33. Fujiwara T, Itoh T, Kubota Y, Kuriyama H (1989) Effects of guanosine nucleotides on skinned smooth muscle tissue of the rabbit mesenteric artery. J Physiol (Lond) 408: 535

    CAS  Google Scholar 

  34. Kitazawa T, Kobayashi S, Horiuti K, Somlyo AV, Somlyo AP (1989) Receptor-coupled, permeabilized smooth muscle: role of the phosphatidylinositol cascade, G-proteins and modulation of the contractile response to Ca“. J Biol Chem 264: 5339–5342

    Google Scholar 

  35. Kitazawa T, Gaylinn BD, Denney GH, Somlyo AP (1991) G-protein-mediated Ca“-sensitization of smooth muscle contraction through myosin light chain phosphorylation. J Biol Chem 266: 1708–1715

    PubMed  CAS  Google Scholar 

  36. Kitazawa T, Masuo M, Somlyo AP (1991) G-protein-mediated inhibition of myosin light chain phosphatase in vascular smooth muscle. Proc Natl Acad Sci USA 88: 9307–9310

    Article  PubMed  CAS  Google Scholar 

  37. Nishimura J, Khalil RA, Drenth JP, Van Breemen C (1990) Evidence for increased myofilament Ca“-sensitivity in norepinephrine-activated vascular smooth muscle. Am J Physiol 259: H2 - H8

    PubMed  CAS  Google Scholar 

  38. Kobayashi S, Gong MC, Somlyo AV, Somlyo AP (1991) Ca“ channel blockers distinguish between G-protein-coupled, pharmacomechanical Ca” release and Ca“-sensitization in smooth muscle. Am J Physiol 260: C364 - C370

    PubMed  CAS  Google Scholar 

  39. Somlyo AV, Kitazawa T, Horiuti K, Kobayashi S, Trentham DR, Somlyo AP (1990) Heparin-sensitive inositol trisphosphate signalling and the role of G-proteins in Ca“-release and contractile regulation in smooth muscle. In: Sperelakis N, Wood JD (eds) Frontiers in smooth muscle research. Alan R Liss, New York, pp 167–182

    Google Scholar 

  40. Takai A, Troschka M, Mieskes G, Somlyo AV (1989) Protein phosphatase composition in smooth muscle of guinea-pig ileum studied with okadaic acid and inhibitor 2. Biochem J 262: 617–623

    PubMed  CAS  Google Scholar 

  41. Sellers JR, Pato MD (1984) The binding of smooth muscle myosin light chain kinase and phosphatases to actin and myosin. J Biol Chem 259: 7740–7746

    PubMed  CAS  Google Scholar 

  42. Horiuti M, Magae J, Han Y-G, Hartshorne DJ, Karaki H (1991) A novel protein phosphatase inhibitor, tautomycin: effect on smooth muscle. FEBS Lett 285: 145–148

    Article  Google Scholar 

  43. Ichikawa K, Ito M, Okubo S, Konishi T, Nakano T, Mino T, Nakamura F, Naka M, Tanaka T (1993) Calponin phosphatase from smooth muscle: a possible role of type 1 protein phosphatase in smooth muscle relaxation. Biochem Biophys Res Commun 193: 827–833

    Article  PubMed  CAS  Google Scholar 

  44. Tang D-C, Kubota Y, Kamm KE, Stull JT (1993) GTP?S-induced phosphorylation of myosin light chain kinase in smooth muscle. FEBS Lett 331: 272–275

    Article  PubMed  CAS  Google Scholar 

  45. Shirazi A, Iizuka K, Fadden P, Mosse C, Somlyo AP, Somlyo AV, Haystead T (1994) Purification and characterization of the mammalian myosin light chain phosphatase holoenzyme: the differential effects of the holoenzyme and its subunits on smooth muscle. J Biol Chem 269: 31598–31606

    PubMed  CAS  Google Scholar 

  46. Chatterjee M, Tejada M (1986) Phorbol ester-induced contraction in chemically skinned vascular smooth muscle. Am J Physiol 251: C356 - C361

    PubMed  CAS  Google Scholar 

  47. Andrea JE, Walsh MP (1992) Protein kinase C of smooth muscle. Hypertension 20: 585–595

    Article  PubMed  CAS  Google Scholar 

  48. Ikebe M, Hartshore DJ, Elzinga M (1987) Phosphorylation of the 20,000-dalton light chain of smooth muscle myosin by the calcium-activated, phospholipid-dependent protein kinase. J Biol Chem 262: 9569–9573

    PubMed  CAS  Google Scholar 

  49. Inagaki M, Yokokura H, Itoh T, Kanmura Y, Kuriyama H, Hidaka H (1987) Purified rabbit brain protein kinase C relaxes skinned vascular smooth muscle and phosphates myosin light chain. Arch Biochem Biophys 254: 136–141

    Article  PubMed  CAS  Google Scholar 

  50. Sutton TA, Haeberle JR (1990) Phosphorylation by protein kinase C of the 20,000-dalton light chain of myosin in intact and chemically skinned vascular smooth muscle. J Biol Chem 265: 2749–2754

    PubMed  CAS  Google Scholar 

  51. Parente JE, Walsh MP, Kerrick WGL, Hoar PE (1992) Effects of the constitutively active proteolytic fragment of protein kinase Con the contractile properties of demembranated smooth muscle fibres. J Muscle Res Cell Motil 13: 90–99

    Article  PubMed  CAS  Google Scholar 

  52. Itoh H, Shimomura A, Okubo S, Ichikawa K, Ito M, Konishi T, Nakano T (1993) Inhibition of myosin light chain phosphatase during Ca“ -independent vasocontraction. Am J Physiol 265: C1319 - C1324

    PubMed  CAS  Google Scholar 

  53. Gong MC, Fuglsang A, Alessi D, Kobayashi S, Cohen P, Somlyo AV, Somlyo AP (1992) Arachidonic acid inhibits myosin light chain phosphatase and sensitizes smooth muscle to calcium. J Biol Chem 267: 21492–21498

    PubMed  CAS  Google Scholar 

  54. Gong MC, Kinter MT, Somlyo AV, Somlyo AP (1995) Arachidonic acid and diacylglyceral release associated with inhibition of myosin light chain dephosphorylation in rabbit smooth muscle. J Physiol (Lond) 486: 113–122

    CAS  Google Scholar 

  55. Shimada T, Somlyo AP (1992) Modulation of voltage-dependent Ca channel current by arachidonic acid and other long-chain fatty acids in rabbit intestinal smooth muscle. J Gen Physiol 100: 27–44

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Tokyo

About this paper

Cite this paper

Somlyo, A.P., Gong, M., Iizuka, K., Haystead, T., Somlyo, A.V. (1995). Pharmacomechanical Coupling Through Regulation of Myosin Light Chain Phosphatase. In: Nakano, T., Hartshorne, D.J. (eds) Regulation of the Contractile Cycle in Smooth Muscle. Springer, Tokyo. https://doi.org/10.1007/978-4-431-65880-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-65880-1_11

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-65882-5

  • Online ISBN: 978-4-431-65880-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics