Advertisement

Anticoagulant and Thrombolytic Therapy in the Newborn

  • Maureen Andrew
  • Barbara Schmidt

Abstract

Pediatric thrombotic disease has its highest prevalence in the newborn period and contributes to both neonatal morbidity and mortality [1–3]. The thromboembolic complications are most frequently secondary to vascular catheters. However, spontaneous occlusion of both arterial and venous vessels in a variety of locations may also occur [2]. Currently, the anticoagulant drug, standard heparin (SH) is commonly used prophylactically to prevent catheter related thrombi [4]. Should a “clinically apparent” thromboembolic complication occur with significant limb or organ impairment, then anticoagulant and/or thrombolytic drugs are frequently used therapeutically to reestablish patency of the vessel or to prevent extension of the thrombi [5,6].

Keywords

Thrombolytic Therapy Thrombin Generation Thromboembolic Complication Thrombolytic Agent Fibrinolytic System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schmidt B, Andrew M (1988) Neonatal thrombotic disease: prevention, diagnosis and treatment. J Pediatr 113: 407–410PubMedCrossRefGoogle Scholar
  2. 2.
    Schmidt B, Zipursky A (1976) Thrombotic disease in newborn infants. Clin Peri 11: 461–488Google Scholar
  3. 3.
    Barnard DR, Hathaway WE (1979) Neonatal thrombosis. Am J Pediatr Hematol/ Oncol 1: 235–244CrossRefGoogle Scholar
  4. 4.
    Gilhooly JT, Lindenberg JA, Reynold JW (1986) Survey of umbilical artery catheter practices. Clin Res 34.142AGoogle Scholar
  5. 5.
    McDonald MM, Hathaway WE (1982) Anticoagulant therapy by continuous hepar-inization in newborn and older infants. J Pediatr 101: 451–457PubMedCrossRefGoogle Scholar
  6. 6.
    Corrigan J (1988) Neonatal thrombosis and the thrombolytic system. Pathophysiology and therapy. Am J Pediatr Hematol/Oncol 10: 83–91CrossRefGoogle Scholar
  7. 7.
    Andrew M, Paes B, Milner R, Johnston M, Mitchell L, Tollefsen DM, Powers P (1987) Development of the human coagulation system in the full term infant. Blood 70: 165–172PubMedGoogle Scholar
  8. 8.
    Andrew M, Paes B, Milner R, Johnston M, Mitchell L, Tollefsen DM, Castle V, Powers P (1988) Development of the coagulation system in the healthy premature infant. Blood 72: 1651–1657PubMedGoogle Scholar
  9. 9.
    Andrew M, Paes B, Johnston (1990) Development of the hemostatic system in the neonate and young infant. Am J Pediatr Hematol/Oncol 12: 95–104CrossRefGoogle Scholar
  10. 10.
    Andrew M, Ofosu F, Schmidt B, Brooker L, Hirsh J, Buchanan MR (1988) Heparin clearance and ex vivo recovery in newborn piglets and adult pigs. Thromb Res 52: 517–527PubMedCrossRefGoogle Scholar
  11. 11.
    McDonald MM, Jacobson JJ, Hay WW, Hathaway WW (1981) Heparin clearance in the newborn. Pediatr Res 15: 1015–1018PubMedCrossRefGoogle Scholar
  12. 12.
    Andrew M, Ofosu F, Brooker L, Buchanan MR (1989) The comparison of the pharmacokinetics of a low molecular weight heparin in the newborn and adult pig. Thromb Haemostas 56: 529–539Google Scholar
  13. 13.
    Rogner G (1976) Heparin level during anticoagulant therapy in mature and premature newborn infants. Kinderarztl Prax 44: 193–200PubMedGoogle Scholar
  14. 14.
    O’Neill JA, Neblett WW III, Born ML (1981) Management of major thromboembolic complications of umbilical artery catheters. J Pediatr Surg 16: 972–978PubMedCrossRefGoogle Scholar
  15. 15.
    Neal WA, Raynolds JW, Jarvis CW, Williams HJ (1972) Umbilical artery catheterization: demonstration of arterial thrombosis by aortography. Pediatr 50: 6–13Google Scholar
  16. 16.
    Goetzman B, Stadalnick RC, Bogren HG, Blankenship WJ, Ikeda RM, Thayer J (1975) Thrombotic complications of umbilical catheters: a clinical and radiographic study. Pediatr 56: 374–379Google Scholar
  17. 17.
    Olinsky A, Aitken FG, Isdale JM (1975) Thrombus formation after umbilical arterial catheterization: an angiographic study. S Afr Med J 49: 1467–1470PubMedGoogle Scholar
  18. 18.
    Mokrohisky ST, Levine R, Blumhagen JD, Wesenberg RL, Simmons MA (1978) Low positioning of umbilical artery catheters increases associated complications in newborn infants. N Engl J Med 299: 561–564PubMedCrossRefGoogle Scholar
  19. 19.
    Sais OS, Rubaltalli FF, D’Elia RD (1987) Clinical and aortographic assessment of the complications of arterial catheterization. Eur J Pediatr 128: 169–179Google Scholar
  20. 20.
    Wesstrom G, Finnstrom O, Stenport G (1979) Umbilical artery catheterization in newborns. I. Thrombosis in relation to catheter type and position. Acta Pediatr Scand 68: 575–81CrossRefGoogle Scholar
  21. 21.
    Witt I, Muller H, Kunter LJ (1969) Evidence for the existence of fetal fibrinogen. Thromb Diath Haemorrh 22: 101–109PubMedGoogle Scholar
  22. 22.
    Galanakis DK, Mosesson MW (1976) Evaluation of the role of in vivo proteolysis (fibrinogenolysis) in prolonging the thrombin time of human umbilical cord fibrinogen. Blood 48: 109–118PubMedGoogle Scholar
  23. 23.
    Greffe BS, Manco-Johnson MJ, Marlar RA (1988) Molecular differences in the forms of fetal protein C (abstr). Pediatr Res 23: 463AGoogle Scholar
  24. 24.
    Weinstein MJ, Blanchard R, Moake JL, Vosburgh E, Moise K (1989) Fetal and neonatal von Willebrand factor (vWF) is unusually large and similar to the vWF in patients with thrombotic thrombocytopenic purpura. Br J Haematol 72: 68–72PubMedCrossRefGoogle Scholar
  25. 25.
    Lammle B, Griffin JH (1985) Formation of the fibrin clot: The balance of procoagulant and inhibitory factors. Clinics in Haematol 14: 281–343Google Scholar
  26. 26.
    Schmidt B, Ofosu FA, Mitchell L, Brooker L, Andrew M (1989) Anticoagulant effects of heparin in neonatal plasma. Pediatr Res 25: 405–408PubMedCrossRefGoogle Scholar
  27. 27.
    Vieira A, Ofosu A, Andrew M (1989) Heparin sensitivity and resistance in the newborn: an explanation. Pediatr Res 25: 274AGoogle Scholar
  28. 28.
    Andrew M, Schmidt B, Mitchell L, Paes B, Ofosu F (1990) Thrombin generation in newborn plasma is critically dependant on the concentration of prothrombin. Thromb Haemostas 63: 27–30Google Scholar
  29. 29.
    Schmidt B, Mitchell L, Ofosu FA, Andrew M (1989) Alpha-2-macroglobulin is an important progressive inhibitor of thrombin in neonatal and infant plasma. Thromb Haemostas 62: 1074–1077Google Scholar
  30. 30.
    Holmer E, Mattson C, Nilsson S (1982) Anticoagulant and antithrombotioc effects of heparin and low molecular weight heparin fragments in rabbits. Thromb Res 25: 475–85PubMedCrossRefGoogle Scholar
  31. 31.
    Fernandez FA, Buchanan MR, Hirsh J, Fenton JW, Ofosu FA (1987) Catalysis of thrombin inhibition provides an index for estimating the antithrombotic potential of glyucosminoglycans in rabbits. Thromb Hemostas 57: 286–293Google Scholar
  32. 32.
    Bachman F (1987) Fibrinolysis In: Verstraete M, Vermylen J, Lijen R, Arnout J (eds) Thrombosis and Hemostasis. Leuven University Press, Leuven pp 227–265Google Scholar
  33. 33.
    Corrigan JJ, Sleeth JJ, Jeter M, Lox CD (1989) Newborn’s fibrinolytic mechanism: Components and plasmin generation. Am J Hematol 32: 273–278PubMedCrossRefGoogle Scholar
  34. 34.
    Hemker HC (1987) The mode of action of heparin in plasma. In: Verstraete M, Vermylen J, Lijnen R, AnRout J (eds) Thrombosis and Hemostasis. Leuven University Press, Leuven, pp 17–36Google Scholar
  35. 35.
    Ofosu FA, Blajchman MA, Modi GJ, Smith LM, Buchanan MR, Hirsh J (1985) The importance of thrombin inhibition for the expression of the anticoagulant activities of heparin, dermatan sulphate, low molecular weight heparin and pentosan polysul-phate. Br J Hematol 60: 695–704CrossRefGoogle Scholar
  36. 36.
    Ofosu FA, Sie P, Modi GJ, Fernandez F, Buchanan MR, Blajchman MA, Boneu B, Hirsh J (1987) The inhibition of thrombin dependent feed-back reactions is critical to the expression of the anticoagulant effect of heparin. Biochem J 243: 579–588PubMedGoogle Scholar
  37. 37.
    Hull RD, Raskob G, Hirsh J (1986) Continuous intravenous heparin compared to intermittent subcutaneous heparin in the initial treatment of proximal vein thrombosis. New Engl J Med 315: 1109–1114PubMedCrossRefGoogle Scholar
  38. 38.
    Levine MN, Hirsh J (1986) Hemorrhagic complications of anticoagulant therapy. Semin Thromb Hemostas 12: 39–62CrossRefGoogle Scholar
  39. 39.
    Schmidt B, Mitchell L, Ofosu F, Andrew M (1988) Standard assays underestimate the concentration of heparin in neonatal plasma. J Lab Clin Med 112: 641–643PubMedGoogle Scholar
  40. 40.
    Carter CJ, Kelton JG, Hirsh J, Cerskus A, Santos AV, Gent M (1982) The relationship between the hemorrhagic and antithrombotic properties of a low molecular weight heparin in rabbits. Blood 59: 1239–45PubMedGoogle Scholar
  41. 41.
    Thomas DP, Merton RE, Lewis WE, Barrowcliffe TW (1981) Studies in man and experimental animals of a low molecular weight heparin fraction. Thromb Hemostas 45: 214–218Google Scholar
  42. 42.
    Andriuolo G, Mastacchi R, Barbanti M, Sarret M (1985) Comparison of the antithrombotic and hemorrhagic effects of heparin and a new low molecular weight heparin in rats. Hemostas 15: 324–330Google Scholar
  43. 43.
    Turpie AGG, Levine MW, Hirsh J, Carter C, Jay RM, Powers PJ, Andrew M, Hull RD, Gent M (1986) A randomized controlled trial of a low molecular weight heparin (Enoxaparin) to prevent deep vein thrombosis in patients undergoing elective hip surgery. New Engl J Med 315: 925–29PubMedCrossRefGoogle Scholar
  44. 44.
    Planes A, Vochelle N, Mansat C (1987) Prevention of deep vein thrombosis after total hip replacement by enozaparin: one daily injection of 40 mg versus two daily injections of 20 mg. Thromb Hemostas (suppl 1): 415AGoogle Scholar
  45. 45.
    Salzman EW, Rosenberg RD, Smith MH, Lindon JN, Favreau L (1980) Effect of heparin and heparin fractions on platelet aggregation. J Clin Invest 65: 64–73PubMedCrossRefGoogle Scholar
  46. 46.
    Heiden D, Mielke CH, Rodvien R (1977) Impairment of primary hemostasis and platelet (14C) 5-hydroxytryptamine release. Br J Hematol 36: 427–436CrossRefGoogle Scholar
  47. 47.
    Fernandez FA, N’guiyan P, Van Ryn J, Ofosu FA, Hirsh J, Buchanan MR (1986) Hemorrhagic doses of heparin and other glygosaminoglycans induce a platelet defect. Thromb Res 43: 491–495PubMedCrossRefGoogle Scholar
  48. 48.
    Johnson EA, Kirkwood TBL, Stirling Y, Perez-Requejo JL, Ingram GIC, Bangham DR, Brozovic M (1976) Four heparin preparations: anti Xa potentiating effects of heparin after subcutaneous injection. Thromb Hemostas 35: 586–91Google Scholar
  49. 49.
    Vieira A, Ofosu F, Andrew M (1990) Heparin sensitivity and resistance. An explanation. Thromb Haemostas (submitted)Google Scholar
  50. 50.
    Massicotte-Nolan P, Mitchell L, Andrew M (1986) A comparative study of coagulation systems in newborn animals. Pediatr Res 20: 961–965CrossRefGoogle Scholar
  51. 51.
    Bara L, Billaud E, Gramond G, Kher A, Samama M (1985) Comparative pharmacokinetics (PK 10169) and unfractionated heparin after intravenous and subcutaneous administration. Thromb Res 39: 631–36PubMedCrossRefGoogle Scholar
  52. 52.
    De Swart CAM, Nijmeyer B, Roelofs JMM, Sixma JJ (1982) Kinetics of intravenously administered heparin in normal humans. Blood 60: 1251–1258PubMedGoogle Scholar
  53. 53.
    Bratt G, Tornebohm E, Lockner D, Bergstrom K (1988) A human pharmacological study comparing conventional heparin and a low molecular weight heparin fragment. Thromb Hemostas 53: 208–11Google Scholar
  54. 54.
    Boneu B, Caranobe C, Gabaig AM, Dupouy D, Sie P (1987) Evidence for a saturable mechanism of disappearance of standard heparin in rabbits. Thromb Res 46: 835–844PubMedCrossRefGoogle Scholar
  55. 55.
    Barzu T, Molho P, Tobelem G, Petitou M, Caen JP (1984) Binding of heparin and low molecular weight heparin fragments to human vascular endothelial cells in culture. Nou Rev Fran Hematol 26: 243–247Google Scholar
  56. 56.
    Hiebert LM, Jaques LB (1976) The observation of heparin on endothelium after injection. Thromb Res 8: 195–204PubMedCrossRefGoogle Scholar
  57. 57.
    Barzu T, Van Rijn JLML, Petitou M, Molho P, Tobelem G, Caen J (1986) Endothelial binding sites for heparin specificity and role in heparin neutralization. Biochem J 238: 847–854PubMedGoogle Scholar
  58. 58.
    Palm M, Mattsson C (1987) Pharmacokinetics of heparin and low molecular weight fragment (fragmin) in rabbits with impaired renal or metabolic clearance. Thromb Hemostas 58: 932–935Google Scholar
  59. 59.
    Boneu B, Buchanan MR, Caranobe C, Gabaig AM, Dupouy D, Sie P, Hirsh J (1987) The disappearance of a low molecular weight heparin fraction (CY216) differs from standard heparin in rabbits. Thromb Res 46: 845–853PubMedCrossRefGoogle Scholar
  60. 60.
    Schmidt B, Buchanan MR, Ofosu F, Brooker L, Hirsh J, Andrew M (1988) Antithrombotic properties of heparin in a neonatal piglet model of thrombin induced thrombosis. Thromb Hemostas 60: 289–292Google Scholar
  61. 61.
    Andrew M, Brooker L, Weitz J (1989) Fibrin clot lysis by thrombolytic agents is impaired in the newborn. XIIth International Congress on Thromb and Hemostas, Tokyo, Japan 62: 288AGoogle Scholar

Copyright information

© Springer Japan 1991

Authors and Affiliations

  • Maureen Andrew
    • 1
  • Barbara Schmidt
    • 1
  1. 1.Department of PediatricsMcMaster UniversityHamilton, OntarioCanada

Personalised recommendations